Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.264 Render date: 2021-03-01T14:37:53.269Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mechanism of charge transport in organic semiconductors and carbon nanomaterials

Published online by Cambridge University Press:  28 May 2015

Yuqian Jiang
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Jinyang Xi
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Zhigang Shuai
Affiliation:
MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
Corresponding
E-mail address:
Get access

Abstract

We develop theoretical descriptions for charge transport in organic semiconductors and carbon nanomaterials. For the localized charges, we found the quantum nuclear tunneling effect is essential which could manifest isotope effect for mobility as well as exotic optical feature. Because the nuclear tunneling tends to favor electron transfer while heavier nuclei decrease the quantum effect, isotopic substitution should reduce carrier mobility. Moreover, the isotopic effect only occurs when the substituted nuclei contribute actively to vibrations with appreciable charge reorganization energy and coupling with carrier motion. For the band-like transport, we propose a Wannier extrapolation scheme for computing the electron-phonon interaction matrix for the Boltzmann equation. Our calculation indicates that the intrinsic electron-phonon scatterings in two-dimensional carbon materials are dominated by low-energy longitudinal-acoustic phonon scatterings over a wide range of temperatures, while by high-frequency optical phonons at high temperature. The electron mobilities of α- and γ-graphynes are predicted to be ca.104 cm2V-1s-1 at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Yuan, Y. B., Giri, G., Ayzner, A. L., Zoombelt, A. P., Mannsfeld, S. C. B., Chen, J. H., Nordlund, D., Toney, M. F., Huang, J. S. and Bao, Z. N., Nature communications, 5 (2014).
Zhang, L., Fonari, A., Liu, Y., Hoyt, A. L. M., Lee, H., Granger, D., Parkin, S., Russell, T. P., Anthony, J. E., Bredas, J. L., Coropceanu, V. and Briseno, A. L., Journal of the American Chemical Society, 136, 92489251 (2014).CrossRef
Long, M.-Q., Tang, L., Wang, D., Wang, L. and Shuai, Z., Journal of the American Chemical Society, 131, 1772817729 (2009).CrossRef
Shuai, Z., Xu, W., Peng, Q. and Geng, H., Science China Chemistry, 56, 12771284 (2013).CrossRef
Shuai, Z. and Peng, Q., Physics Reports 537, 123156 (2013).CrossRef
Tang, L., Long, M., Wang, D. and Shuai, Z., Science in China Series B: Chemistry, 52, 16461652 (2009).CrossRef
Jiang, Y., Xu, H., Zhao, N., Peng, Q. and Shuai, Z., Acta Chim. Sinica, 72, 201207 (2014).CrossRef
Shi, Q. H., Peng, Q., Sun, S. R. and Shuai, Z. G., Acta Chim. Sinica, 71, 884891 (2013).CrossRef
Brédas, J. L., Calbert, J. P., da Silva Filho, D. A. and Cornil, J., Proceedings of the National Academy of Sciences, 99, 58045809 (2002).CrossRef
Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R. and Brédas, J.-L., Chemical Reviews, 107, 926952 (2007).CrossRef
Gorham-Bergeron, E. and Emin, D., Physical Review B, 15, 36673680 (1977).CrossRef
Ulstrup, J. and Jortner, J., The Journal of Chemical Physics, 63, 43584368 (1975).CrossRef
Asadi, K., Kronemeijer, A. J., Cramer, T., Jan Anton Koster, L., Blom, P. W. M. and de Leeuw, D. M., Nature communications, 4, 1710 (2013).CrossRef
Yuen, J. D., Menon, R., Coates, N. E., Namdas, E. B., Cho, S., Hannahs, S. T., Moses, D. and Heeger, A. J., Nat Mater, 8, 572575 (2009).CrossRef
Kronemeijer, A. J., Huisman, E. H., Katsouras, I., van Hal, P. A., Geuns, T. C. T., Blom, P. W. M., van der Molen, S. J. and de Leeuw, D. M., Physical Review Letters, 105, 156604 (2010).CrossRef
Rodin, A. S. and Fogler, M. M., Physical Review Letters, 105, 106801 (2010).CrossRef
Nan, G., Yang, X., Wang, L., Shuai, Z. and Zhao, Y., Physical Review B, 79, 115203 (2009).CrossRef
Sakanoue, T. and Sirringhaus, H., Nat Mater, 9, 736740 (2010).CrossRef
Geng, H., Peng, Q., Wang, L., Li, H., Liao, Y., Ma, Z. and Shuai, Z., Advanced Materials, 24, 35683572 (2012).CrossRef
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Physical Review B, 85, 115317 (2012).CrossRef
Borysenko, K. M., Mullen, J. T., Li, X., Semenov, Y. G., Zavada, J. M., Nardelli, M. B. and Kim, K. W., Physical Review B, 83, 161402 (2011).CrossRef
Borysenko, K. M., Mullen, J. T., Barry, E. A., Paul, S., Semenov, Y. G., Zavada, J. M., Nardelli, M. B. and Kim, K. W., Physical Review B, 81, 121412 (2010).CrossRef
Giustino, F., Cohen, M. L. and Louie, S. G., Physical Review B, 76, 165108 (2007).CrossRef
Vukmirović, N., Bruder, C. and Stojanović, V. M., Physical Review Letters, 109, 126407 (2012).CrossRef
Casula, M., Calandra, M. and Mauri, F., Physical Review B, 86, 075445 (2012).CrossRef
Lin, S. H., Chang, C. H., Liang, K. K., Chang, R., Shiu, Y. J., Zhang, J. M., Yang, T. S., Hayashi, M. and Hsu, F. C., Adv. Chem. Phys., 121, 188 (2002).
Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman, S. and Brédas, J.-L., Journal of the American Chemical Society, 128, 98829886 (2006).CrossRef
Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P., Reviews of Modern Physics, 73, 515562 (2001).CrossRef
Xi, J., Long, M., Tang, L., Wang, D. and Shuai, Z., Nanoscale, 4, 43484369 (2012).CrossRef
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. and Vanderbilt, D., Reviews of Modern Physics, 84, 14191475 (2012).CrossRef
Noffsinger, J., Giustino, F., Malone, B. D., Park, C.-H., Louie, S. G. and Cohen, M. L., Computer Physics Communications, 181, 21402148 (2010).CrossRef
Frisch, M. J., Trucks, G. W. and Schlegel, H. B., Gaussian 03, (2004) Gaussian Inc., Wallingford CT.Google Scholar
Reimers, J. R., Journal of Chemical Physics, 115, 91039109 (2001).CrossRef
Nan, G. and Li, Z., Phys. Chem. Chem. Phys., 14, 94519459 (2012).CrossRef
Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. and Carey, J. T., Chemistry of Materials, 20, 74867491 (2008).CrossRef
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da Silva Filho, D. A., Brédas, J.-L., Miller, L. L., Mann, K. R. and Frisbie, C. D., The Journal of Physical Chemistry B, 108, 1928119292 (2004).CrossRef
He, T., Stolte, M. and Würthner, F., Advanced Materials, 25, 69516955 (2013).CrossRef
Minder, N. A., Ono, S., Chen, Z., Facchetti, A. and Morpurgo, A. F., Advanced Materials, 24, 503508 (2012).CrossRef
Xie, W., McGarry, K. A., Liu, F., Wu, Y., Ruden, P. P., Douglas, C. J. and Frisbie, C. D., The Journal of Physical Chemistry C, 117, 1152211529 (2013).CrossRef
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A. and Gershenson, M. E., Physical Review Letters, 93, 086602 (2004).CrossRef
Lee, B., Chen, Y., Fu, D., Yi, H., Czelen, K., Najafov, H. and Podzorov, V., Nat. Mater., 12, 11251129 (2013).CrossRef
Paolo, G., Stefano, B., Nicola, B., Matteo, C., Roberto, C., Carlo, C., Davide, C., Guido, L. C., Matteo, C., Ismaila, D., et al. , Journal of Physics: Condensed Matter, 21, 395502 (2009).
Ferry, D. K., Semiconductor Transport (Taylor and Francis, New York, 2000).Google Scholar
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Physical Review B, 85, 165440 (2012).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 19 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanism of charge transport in organic semiconductors and carbon nanomaterials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanism of charge transport in organic semiconductors and carbon nanomaterials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanism of charge transport in organic semiconductors and carbon nanomaterials
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *