Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.815 Render date: 2021-02-25T23:17:23.119Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence

Published online by Cambridge University Press:  11 June 2015

Toshiya Yokogawa
Affiliation:
Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
Masaki Fujikane
Affiliation:
Panasonic Corporation, Moriguchi, Osaka 570-8501, Japan
Shijo Nagao
Affiliation:
Osaka University, Suita, Osaka 565-0871, Japan
Roman Nowak
Affiliation:
Aalto University, FI-00076 Aalto, Finland
Get access

Abstract

Yield shear stress dependence on dislocation density and crystal orientation was studied in bulk GaN crystals by nanoindentation examination. The yield shear stress decreased with increasing dislocation density which is estimated by dark spot density in cathodoluminescence, and it decreased with decreasing nanoindentation strain-rate. It reached and coincided at 11.5 GPa for both quasi-static deformed c-plane (0001) and m-plane (10-10) GaN. Taking into account theoretical Peierls–Nabarro stress and yield stress for each slip system, these phenomena were concluded to be an evidence of heterogeneous mechanism associated plastic deformation in GaN crystal. Transmission electron microscopy and molecular dynamics simulation also supported the mechanism with obtained r-plane (-1012) slip line right after plastic deformation, so called pop-in event. The agreement of the experimentally obtained atomic shuffle energy with the calculated twin boundary energy suggested that the nucleation of the local metastable twin boundary along the r-plane concentrated the indentation stress, leading to an r-plane slip. This nanoindentation examination is useful for the characterization of crystalline quality because the wafer mapping of the yield shear stress coincided the photoluminescence mapping which shows increase of emission efficiency due to reduction of non-radiative recombination process by dislocation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Fujikane, M., Leszczyński, M., Nagao, S., Nakayama, T., Yamanaka, S., Niihara, K., and Nowak, R., J. Alloy. Compd. 450, 405 (2008).CrossRef
Fujikane, M., Inoue, A., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 7, 1798 (2010).CrossRef
Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 8, 429 (2011).CrossRef
Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Appl. Phys. Lett. 99, 222106 (2011).
Hardy, M. T., Hsu, P. S., Wu, F., Koslow, I. L., Young, E. C., Nakamura, S., Romanov, A. E., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 100, 202103 (2012).CrossRef
Huang, J., Xu, K., Gong, X. J., Wang, J. F., Fan, Y. M., Liu, J. Q., Zeng, X. H., Ren, G. Q., Zhou, T. F., and Yang, H., Appl. Phys. Lett. 98, 221906 (2011).CrossRef
Bradby, J. E., Kucheyev, S. O., Williams, J. S., Jagadish, C., Swain, M. V., Munroe, P., and Phillips, M. R., Appl. Phys. Lett. 80, 4537 (2002).CrossRef
Jahn, U., Trampert, A., Wagner, T., Brandt, O., and Ploog, K. H., Phys. Status Solidi A 192, 79 (2002).3.0.CO;2-5>CrossRef
Chien, C. H., Jian, S. R., Wang, C. T., Juang, J. Y., Huang, J. C., and Lai, Y. S., J. Phys. D Appl. Phys. 40, 3985 (2007).CrossRef
Jian, S. R., Juang, J. Y., and Lai, Y. S., J. Appl. Phys. 103, 033503 (2008).CrossRef
Jian, S. R., Nanoscale Res. Lett. 3, 6 (2008).CrossRef
Tsai, C. H., Jian, S. R., and Juang, J. Y., Appl. Surf. Sci. 254, 1997 (2008).CrossRef
Srinivasan, S., Geng, L., Liu, R., Ponce, F. A., Narukawa, Y., and Tanaka, S., Appl. Phys. Lett. 83, 5187 (2003).CrossRef
Nowak, R., Pessa, M., Suganuma, M., Leszczyński, M., Grzegory, I., Porowski, S., and Yoshida, F., Appl. Phys. Lett. 75, 2070 (1999).CrossRef
Nowak, R., Sekino, T., Maruno, S., and Niihara, K., Appl. Phys. Lett. 68, 1063 (1996).CrossRef
Nowak, R., Sekino, T., and Niihara, K., Philos. Mag. A 74, 171 (1996).CrossRef
Nowak, R., Sekino, T., and Niihara, K., Acta Mater. 47, 4329 (1999).CrossRef
Nowak, R., Manninen, T., Heiskanen, K., Sekino, T., Hikasa, A., Niihara, K., and Takagi, T., Appl. Phys. Lett. 83, 5214 (2003).CrossRef
Tymiak, N., Chrobak, D., Gerberich, W., Warren, O., and Nowak, R., Phys. Rev. B 79, 174116 (2009).CrossRef
Chrobak, D., Nordlund, K., and Nowak, R., Phys. Rev. Lett. 98, 045502 (2007).CrossRef
Nowak, R., Chrobak, D., Nagao, S., Vodnick, D, Berg, M., Tukiainen, A., and Pessa, M., Nat. Nanotechnol. 4, 287 (2009).CrossRef
Chrobak, D., Tymiak, N., Beaber, A., Ugurlu, O., Gerberich, W. W., and Nowak, R., Nat. Nanotechnol. 6, 480 (2011).CrossRef
Wu, J. Y., Nagao, S., He, J. Y., and Zhang, Z. L., Nano Lett. 11, 5264 (2011).CrossRef
Nowak, R., Horino, Y., Ando, Y., and Maruno, S., Appl. Phys. Lett. 68, 3743 (1996).CrossRef
Nagao, S., Nordlund, K., and Nowak, R., Phys. Rev. B 73, 144113 (2006).CrossRef
Nagao, S., Fujikane, M., Tymiak, N., and Nowak, R., J. Appl. Phys. 105, 106104 (2009).CrossRef
Fujikane, M., Setoyama, D., Nagao, S., Nowak, R., and Yamanaka, S., J. Alloy. Compd. 431, 250 (2007).CrossRef
Nord, J., Nordlund, K., Keinonen, J., and Albe, K.: Nucl. Instrum. Methods. Phys. Res. Sect. B 202, 93 (2003).Google Scholar
Yip, S., Nature 391, 532 (1998).CrossRef
Schiøtz, J.1, Di Tolla, F. D., and Jacobsen, K. W., Nature 391, 561 (1998).CrossRef
Gerberich, W. and Mook, W., Nat. Mater. 4, 577 (2005).CrossRef
Schuh, C. A., Mason, J. K., and Lund, A. C., Nat. Mater. 4, 617 (2005).CrossRef
Béré, A. and Serra, A.: Phys. Rev. B 68, 033305 (2003).CrossRef
Béré, A. and Serra, A.: Philos. Mag. 86, 2159 (2006).CrossRef
Fischer-Cripps, A. C., Introduction to Contact Mechanics, 2nd. ed. (Springer Science+Business Media, LLC, 2007) Chap. 5, pp. 8791.CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *