Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-15T21:00:07.096Z Has data issue: false hasContentIssue false

Materials Properties and Utilization of Fe3B/Nd2Fe14B-Type Nanocomposite Permanent Magnets Based on Nd-Fe-Cr-Co-B

Published online by Cambridge University Press:  21 February 2011

S. Hirosawa
Affiliation:
R&D Division, Sumitomo Special Metals Co. Ltd., 2-15-17 Egawa, Osaka 618-0013, Japan, HIROSAWA.S@ssmc.co.jp
H. Kanekiyo
Affiliation:
R&D Division, Sumitomo Special Metals Co. Ltd., 2-15-17 Egawa, Osaka 618-0013, Japan
Y. Shigemoto
Affiliation:
R&D Division, Sumitomo Special Metals Co. Ltd., 2-15-17 Egawa, Osaka 618-0013, Japan
Get access

Abstract

Recent progresses of materials development and their utilization of Cr-and-Co-doped Fe3B/Nd2Fe14B-type nanocomposite permanent magnets are reported. A practical balance between enhanced intrinsic coercivity and temperature stability of magnetic properties has been realized by simultaneous additions of Cr and Co. This type of magnets are less susceptible to oxidation because of the less rare-earth content. Consequently, even fine powders (e. g., under 38 micrometer sieve) are physically and chemically stable in contrast to the conventional Nd2Fe14B-type melt-spun materials. The stability in terms of the structural losses is also superior to that of the Nd2Fe14B-type melt-spun materials. Utilization of the Cr-and-Co-doped Fe3B/Nd2Fe14B nanocomposite permanent magnets as a hard magnetic component of injection-molded resin-bonded magnets seems promising because of the excellent stability of the magnetic properties of fine powders. Direct quenching of a melt into the nanocomposite structure has become possible recently in addition to the conventional processing route of crystallization of an amorphous precursor, opening up the possibility of less-expensive production of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Buschow, K. H. J., Mooij, D. B. de, and Coehoorn, R., J. Less-Common Met. 145 (1988) 601611.Google Scholar
[2] Coehoorn, R., Mooij, D. B. de, Duchateau, J. P. W. B., and Buschow, K. H. J., J. de Phys. Colloque C8, 49 (1988) C8-669670.Google Scholar
[3] Skomski, R. and Coey, J. M. D., Phys. Rev.B, 48 (1993) 1581215816.Google Scholar
[4] Manaf, A., Buckley, R. A., and Davies, H. A., J. Magn. Magn. Mater. 128 (1993) 302306.Google Scholar
[5] Withanawasam, L., Hadjipanayis, G. C., and Krause, R. F., J. Appl. Phys. 75 (1994) 6646.Google Scholar
[6] Bauer, J., Seeger, M., Zern, A., and Kronmiiller, H., J. Appl. Phys. 80 (1996) 16671673.Google Scholar
[7] Yoneyama, T., Yamamoto, T., and Hidaka, T., Appl. Phys. Lett. 67 (1995) 31973199.Google Scholar
[8] Ding, J., McCormick, P. G. and Street, R., J. Magn. Magn. Mater. 124 (1993) 1.Google Scholar
[9] Kneller, E. F. and Hawig, R., IEEE Trans. Magn. 27 (1991) 35883600.Google Scholar
[10] Kanekiyo, H. and Hirosawa, S., J. Magn. Soc. Jpn. 17 (1993) 2863 (text in Japanese).Google Scholar
[11] Hirosawa, S., Kanekiyo, H., and Uehara, M., J. Appl. Phys. 73 (1993) 6488.Google Scholar
[12] Kanekiyo, H., Uehara, M., and Hirosawa, S., IEEE Trans. Magn. 29 (1993) 2863.Google Scholar
[13] Hirosawa, S. and Kanekiyo, H., Trans. Mat. Res. Soc. Jpn. 14B (1994) 965.Google Scholar
[14] Kanekiyo, H., Uehara, M., and Hirosawa, S., Mater. Sci. Eng. A181/A182 (1994) 868.Google Scholar
[15] Hirosawa, S. and Kanekiyo, H., Proc. 13 'h Int. Workshop on Rare Earth Magnets and Their Applications, Birmingham, UK (Univ. Birmingham, 1994), pp. 87.Google Scholar
[16] Kanekiyo, H. and Hirosawa, S., Proc. 15th Int. Workshop on Rare Earth Magnets and Their Applications, Dresden, Germany,(German Metallurgical Society, 1998)Google Scholar
[17] Gong, W., Hadjipanayis, G. C., and Krause, R. F., J. Applied Phys. (1994) 6649.Google Scholar
[18] Miao, W. F., Ding, J., McCormick, P. G., and Street, R., J. Alloys. Comp. 240 (1996) 200.Google Scholar
[19] Parhofer, S., Kurt, C., Wecker, J., Gieres, G., and Schultz, L., J. Appl. Phys. 83 (1998) 2735.Google Scholar
[20] Fullerton, E. E., Jiang, J. S., Sowers, C. H., Pearson, J. E., and Bader, S. D., Appl. Phys. Lett. 72 (1998) 380.Google Scholar
[21] Liu, J. P., Liu, Y., Luo, C. P., Shan, Z. S., and Sellmyer, D. L., J. Appl. Phys. 81 (1997) 5644.Google Scholar
[22] Mubu, K., Nagahama, T., and Shinjo, T., J. Magn. Magn. Mater. 163 (1996) 75.Google Scholar
[23] Jurczyk, M. and Gwan, P. B., J. Alloys. Comp. 230 (1995) L1.Google Scholar
[24] Mishra, R. K., and Panchanathan, V., J. Appl. Phys. 75 (1994) 6652.Google Scholar
[25] Kojima, A., Makino, A., Inoue, A., Nanostruct. Mater. 8 (1998) 1015.Google Scholar
[26] Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E., J. Appl. Phys. 55 (1984) 2078.Google Scholar
[27] Yamashita, F. and Hashimoto, S., Matsushita Technical J. 44 (1998) 190 (text in Japanese).Google Scholar
[28] Ohara, K., Ueda, H., Yamashita, F., Digests of 19th Ann. Conf. Magn. Jpn.(1995) 127 (text in Japanese).Google Scholar