Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-9glzh Total loading time: 0.273 Render date: 2021-03-09T10:29:32.460Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Magnetic Hardening Induced by Exchange Coupling in Mechanically Milled Antiferromagnetic - Ferromagnetic Composites

Published online by Cambridge University Press:  21 February 2011

J. Sort
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Nogués
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
X. Amils
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
S. Suriñach
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J.S. Muñoz
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
M.D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Get access

Abstract

Mechanical milling has been used to synthesize ferromagnetic (FM, Co) - antiferromagnetic (AFM, NiO) composites. The coercivity, HC, and energy product, BHMax, of these composites can be enhanced at room temperature after appropriate heat treatments above the Néel temperature of the AFM, TN. Although the maximum Hc is achieved for the (NiO)1: 1 (Co) weight ratio, BHMax is further enhanced for the (NiO)2:3(Co) ratio, where higher saturation magnetization is obtained due to the larger amount of FM. Exchange coupling, responsible for these effects, decreases as the temperature is increased and vanishes close to TN. The thermal stability of the coercivity enhancement remains rather insensitive to the somewhat broad distribution of blocking temperatures of this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Benjamin, J. S., Metall. Trans. 1, 2943 (1970); Mater. Sci. Forum 88-90, 1 (1992).Google Scholar
2.For a review, see Murty, B. S. and Ranganathan, S., Inter. Mater. Rev. 43, 101 (1998).CrossRefGoogle Scholar
3.For a review, see Siegel, R. W., Nanostruct. Mater. 3, 1 (1993).CrossRefGoogle Scholar
4. McCormick, P. G., Miao, W. R., Smith, P. A. I., Ding, J., Street, R., J. Appl. Phys. 83, 6256 (1998).CrossRefGoogle Scholar
5. Raviprasad, K., Runakoshi, M. and Umemoto, M., J. Appl. Phys. 83, 921 (1998).CrossRefGoogle Scholar
6. Fargan, A. J., Viret, M. and Coey, J. M. D., J. Phys: Cond. Matter. 7, 8953 (1998).Google Scholar
7. Geoghegan, D. S., McCormick, P. G. and Street, R., Mat. Sci. Forum 179–181, 629 (1995).CrossRefGoogle Scholar
8. Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 102, 1413 (1956); 105, 904 (1957).CrossRefGoogle Scholar
9.For a review, see Nogués, J. and Schuller, Ivan K., J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
10. Edelstein, A. S., Kodama, R. H., Miller, M., Browning, V., Lubitz, P., Cheng, S. F. and Sieber, H., Appl. Phys. Lett. 74, 3872 (1999); Y. J. Tsang, B. Roos, T. Mewes, S. O. Demokritov, B. Hillebrands and Y. J. Wang, Appl. Phys. Lett. 75, 707 (1999).CrossRefGoogle Scholar
11. Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J. S. and Baró, M. D., Mater. Sci. Forum (2000) in press.Google Scholar
12. Huang, J. Y., Wu, Y. K. and Ye, H. Q., Appl. Phys. Lett. 66, 308 (1995); F. Cardellini and G. Mazzone, Philos. Mag. A 67, 1289 (1993).CrossRefGoogle Scholar
13. Sort, J., Nogués, J., Amils, X., Surifiach, S., Muftoz, J. S. and Baró, M. D., Appl. Phys. Lett. 75, 3177 (1999).CrossRefGoogle Scholar
14. Sato, H., Kitakami, O., Sakurai, T., Shimada, Y., Otani, Y. and Fukamichi, K., J. Appl. Phys. 81, 1858 (1997).CrossRefGoogle Scholar
15. Soeya, S., Imagawa, T., Mitsuoka, K. and Narishige, S., J. Appl. Phys. 76, 5356 (1994); C. Tsang and Kenneth Lee, J. Appl. Phys. 53, 2605 (1982).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Hardening Induced by Exchange Coupling in Mechanically Milled Antiferromagnetic - Ferromagnetic Composites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic Hardening Induced by Exchange Coupling in Mechanically Milled Antiferromagnetic - Ferromagnetic Composites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic Hardening Induced by Exchange Coupling in Mechanically Milled Antiferromagnetic - Ferromagnetic Composites
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *