Skip to main content Accessibility help
×
Home

Magnetic and Structural Properties of MBE-grown Oxidic Multilayers

Published online by Cambridge University Press:  15 February 2011

P. J. H. Bloemen
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
P. A. A. van der heijden
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
R. M. Wolf
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. Aan de Stegge
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. T. Kohlhepp
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
A. Reinders
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. M. Jungblut
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
P. J. van der Zaag
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
W. J. M. de Jonge
Affiliation:
Department of Physics, Eindhoven University of Technology (EUT), 5600 MB Eindhoven, The Netherlands
Get access

Abstract

Multilayers composed of oxides including Fe3O4, Co x Fe3−x , O4, CoO, NiO and MgO have been grown epitaxially by MBE on MgO(100) single crystal substrates. These structures can be grown with a high crystallinity in the form of flat layers having sharp interfaces. RHEED studies which commonly yielded sharp streaks accompanied by Kikuchi lines show that, for instance, growth of CoO on Fe3O4 changes the RHEED pattern from that consistent with a spinel structure to that of a rocksalt structure within about one and a half unit cell of CoO. STM studies on a 400 Å Fe3O4 layer displaying atomic resolution enabled us to identify the origin of the reconstruction that one commonly observes in the RHEED and LEED patterns for magnetite. Regarding important fundamental magnetic parameters, relevant thickness dependencies were mapped out using localized magneto-optical Kerr effect experiments performed on several samples that routinely included one or multiple wedge shaped layers. These studies revealed the existence of a region in the Fe3O4 layer near the interfaces which exhibits no net magnetic moment, strain driven perpendicular orientated magnetization for the CoO/Fe3O4(100) and CoO/Co x Fe3−x O4(100) bilayer systems, and information on the thickness dependence of the magnetic interlayer coupling across an MgO spacer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] see for reviews several chapters in vol.1 and 2 of Ultrathin Magnetic Structures, ed. Bland, J.A.C. and Heinrich, B. (Springer-Verlag Berlin Heidelberg, 1994).CrossRefGoogle Scholar
[2] Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chien, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
[3] Carey, M.J., Berkowitz, A.E., Appl. Phys. Lett. 60, 3060 (1992); M.J. Carey, A.E. Berkowitz, J.A. Borchers, and R.W. Erwin, Phys. Rev. B 47, 9952 (1993).CrossRefGoogle Scholar
[4] Egelhoff, W.F. Jr, et al. , J. Appl. Phys. 78, 273 (1995).CrossRefGoogle Scholar
[5] Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R., Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle Scholar
[6] Gijs, M.A.M. and Kelly, P.J., European patent application, EP 0 672 303 Al, Sept. 1995.Google Scholar
[7] Terashima, T. and Bando, Y., Thin Solid Films 151, 455 (1987).CrossRefGoogle Scholar
[8] Lind, D.M., Berry, S.D., Chern, G., Mathias, H., and Testardi, L.R., Phys. Rev. B 45 1838 (1992)CrossRefGoogle Scholar
[9] Wolf, R.M., De Veirman, A.E., van der Sluis, P., van der Zaag, P.J., and aan de Stegge, J.B.F., Mater. Res. Soc. Symp. Proc. 341, 23 (1994).CrossRefGoogle Scholar
[10] Voogt, F.C., Hibma, T., Zhang, G.L., Hoefman, M. and Niesen, L., Surf. Sci. 331, 1508 (1995); S.D. Peacor and T. Hibma, Surf. Sci. 301, 11 (1994).CrossRefGoogle Scholar
[11] van der Zaag, P.J., Wolf, R.M., Ball, A.R., Bordel, C., Feiner, L.F. and Jungblut, R.M., J. Magn. Magn. Mater. 148, 346 (1995).CrossRefGoogle Scholar
[12] Sevenhans, W., Gijs, M., Bruynserade, Y., Homma, H. and Schuller, I.K., Phys. Rev. B 34, 5955 (1986).CrossRefGoogle Scholar
[13] Tarrach, G., Bügler, D., Schaub, T., Wiesendanger, R. and Günterodt, H.-J., Surf. Sci. 285, 1 (1993).CrossRefGoogle Scholar
[14] van der Heijden, P.A.A. et al. , in preparation.Google Scholar
[15] Parkin, S.S.P., Sigsbee, R., Felici, R. and Felcher, G.P., Appl. Phys. Lett. 48, 604 (1986).CrossRefGoogle Scholar
[16] van de Veerdonk, R.J.M. et al. , to be published.Google Scholar
[17] de Jonge, W.J.M., Bloemen, P.H.J., and den Broeder, F.J.A. in Ultrathin Magnetic Structures I, edited by Bland, J.A.C. and Heinrich, B. (Springer-Verlag Berlin Heidelberg, 1994), p 65.Google Scholar
[18] van der Heijden, P.A.A. et al. , MRS spring meeting 1995, San Francisco, to be published.Google Scholar
[19] Slonczewski, J.C., Phys. Rev. B 39, 6995 (1989).CrossRefGoogle Scholar
[20] de Gennes, P.-G., Phys. Rev. 118, 141 (1960).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-pdn9z Total loading time: 0.383 Render date: 2021-01-20T00:36:08.821Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic and Structural Properties of MBE-grown Oxidic Multilayers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic and Structural Properties of MBE-grown Oxidic Multilayers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic and Structural Properties of MBE-grown Oxidic Multilayers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *