Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-18T13:09:22.618Z Has data issue: false hasContentIssue false

Low-Temperature Selective Growth of Heteroepitaxial α-Al2O3 Thin Films on a NiO Layer by the Electron-Beam Assisted PLD Process

Published online by Cambridge University Press:  01 February 2011

Makoto Hosaka
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Yasuyuki Akita
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Yuki Sugimoto
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Yushi Kato
Affiliation:, United States
Yusaburo Ono
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Akifumi Matsuda
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Koji Koyama
Affiliation:, Namiki Precision Jewel Co., Ltd., Tokyo, United States
Mamoru Yoshimoto
Affiliation:, Tokyo Institute of Technology, Yokohama, Japan
Get access


Selective heteroepitaxial growth of α-Al2O3 thin films on a NiO layer was investigated using an electron-beam assisted pulsed laser deposition process. The epitaxial NiO layer was grown on an ultrasmooth sapphire (α-Al2O3 single crystal) (0001) substrate. The α-Al2O3 thin film could be grown epitaxially only in the electron-beam irradiated region of the epitaxial NiO layer at 300°C, while the amorphous Al2O3 film was grown in the non-irradiated region. The homoepitaxial growth of α-Al2O3 thin films could not be attained on the sapphire (0001) substrate at 300°C. This indicates that the electron-beam irradiation enhances heteroepitaxial growth of the α-Al2O3 thin films on the NiO layer at 300°C. When we annealed the epitaxial Al2O3/NiO bilayer film at 350°C in a hydrogen atmosphere, we could reduce only the NiO layer to an epitaxial Ni metal layer, allowing the fabrication of epitaxial Al2O3/Ni (insulator/metal structure) films. The fabricated Al2O3/Ni bilayer films exhibited a very smooth surface.

Research Article
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Gao, K. Y., Seyller, T., Ley, L., Ciobanu, F., Pensl, G., Tadich, A., Riley, J. D. and Leckey, R. G. C., Appl. Phys. Lett. 83, 1830 (2003).Google Scholar
2. Park, B. G., Banerjee, T., Lodder, J. C., Jansen, R., Phys. Rev. Lett. 99, 217206 (2007).Google Scholar
3. Wei, H. X., Qin, Q. H., Ma, M., Sharif, R., Han, X. F., J. Appl. Phys. 101, 09B501 (2007).Google Scholar
4. Han, X. F., Oogane, M., Kubota, H., Ando, Y., Miyazaki, T., Appl. Phys. Lett. 77, 283 (2000).Google Scholar
5. Wang, D., Nordman, C., Daughton, J. M., Qian, Z., Fink, J., IEEE Trans.Magn. 40, 2269 (2004).Google Scholar
6. Yokoo, K., Tanaka, H., Sato, S., Murota, J., Ono, S., J. Vac. Sci. Technol. B, 11 (2), 429 (1993).Google Scholar
7. Chambers, S. A., Surf.Sci. Rep. 39, 105 (2000).Google Scholar
8. Franchy, R., Surf.Sci. Rep. 38, 195 (2000).Google Scholar
9. Jaeger, R. M., Kuhlenbeck, H., Freund, H.-J., Wuttig, M., Hoffmann, W., Franchy, R., Ibach, H., Surf.Sci. 259, 235 (1991).Google Scholar
10. Klimenkov, M., Nepijko, S., Kuhlenbeck, H., Freund, H.-J., Surf.Sci. 385, 66 (1997).Google Scholar
11. Lykhach, Y., Moroz, V., Yoshitake, M., Appl.Surf. Sci. 241, 250 (2005).Google Scholar
12. Lay, T. T., Yoshitake, M., Song, W., Appl.Surf. Sci. 239, 451 (2005).Google Scholar
13. Sasaki, A., Isa, H., Liu, J., Akiba, S., Hanada, T., Yoshimoto, M., Jpn. J. Appl. Phys. 41, 6534 (2002).Google Scholar
14. Matsuda, A., Kasahara, M., Watanabe, T., Hara, W., Otaka, S., Koyama, K., Yoshimoto, M., Mater.Res. Soc. Symp. Proc. 962, 0962-P09–04 (2007).Google Scholar
15. Yoshimoto, M., Maeda, T., Ohnishi, T., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., Miyamoto, A., Koinuma, H., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
16. Liu, J., Barbero, C. J., Corbett, J. W., Rajan, K., Leary, H., J. Appl. Phys. 73(10), 5272 (1993).Google Scholar
17. Gaskell, D.R., Introduction to Metallurgical Thermodynamics (McGraw-Hill Kogakusha, Tokyo, 1973) p. 269.Google Scholar
18. Datta, P.K., Du, H.I., Burnell-Gray, J.S., Ricker, R.E., in ASM Handbook: Volume 13B: Corrosion: Materials, edited by Cramer, S.D., Bernard, S., Covino, J. (Asm International, Ohio, 1995), p. 490495.Google Scholar
19. Gasik, M.M., Gasik, M.I., in Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, edited by Totten, G.E., MacKenzie, D.S. (Marcel Dekker Inc., New York, 2003), p. 4869.Google Scholar
20. Kim, G., Moon, Y., Lee, D., J.Power Sources 104, 181 (2002).Google Scholar