Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T05:33:50.606Z Has data issue: false hasContentIssue false

Low Temperature Direct Reactions Between Elemental Silicon and Liquid Ammonia or Amines for Ceramics and Chemical Intermediates

Published online by Cambridge University Press:  25 February 2011

Eloise A. Pugar
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91360
Peter E.D. Morgan
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91360
Get access

Abstract

Direct processes that may be used to manufacture high purity silicon nitride or silicon carbide are described. Elemental silicon has been found to react directly with liquid ammonia and amines at low temperature to yield compounds for both the ceramic and chemical industries. Silicon-amine direct reactions, previously thought not to occur, were investigated by using 29Si NMR, IR, UV, Raman, XRD, ICP, EDS and TGA methods to detect and characterize product formation. The [Si,N,H] and [Si,C,N,H] products transform to silicon nitride or silicon carbide respectively when heated above 1300°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aucote, J., Mat. Sci. and Tech., 2, 700708 (1986).CrossRefGoogle Scholar
2. Sugimura, Atsuhiko and Hanabusa, Mitsugu, Japanese Journal of Applied Physics, 26, L56L58 (1987).Google Scholar
3. Ito, T., Nozaki, T., Arakawa, H. and Shimoda, M., Appl. Phys. Lett., 32, 330 (1978).Google Scholar
4. Iwai, T. and Kawahito, T., U.S. Pat. 4, 196, 178, April 1, 1980.Google Scholar
5. Morgan, P.E.D., AD-757,748 and AD - 778, 373, Office of Naval Research, Arlington, VA, March, 1973 and December 1973.Google Scholar
6. Rochów, E.G., J. Am. Chem. Soc., 67, 963 (1945).Google Scholar
7. Mellor, J.W., A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. VI, (Wiley, New York, 1961) p. 163.Google Scholar
8. Moser, L., Poggend. Annal., 56, 177 (1842).Google Scholar
9. de, N. St. Victor, Compt. Rend., 45, 811 (1857).Google Scholar
10. Kreuzburg, G., Lenz, A., Rogier, W., Patent, U.S. no. 4, 113, 761, Sep. 12, 1978.Google Scholar
11. Lampert, I., Fuβtetter, H. and Jacob, H., J. Electrochem. Soc., 133, 14721474 (1986).Google Scholar
12. Anderson, A.R. and Porter, T.H., U. S. Patent 3,803,197, Apr. 9, 1974.Google Scholar
13. Bleh, O., U.S. Patent 3,627,807, Dec. 14, 1971.Google Scholar
14. Magee, W.L., U.S. Patent 4,288,604, Sep. 8, 1981.Google Scholar
15. Bauer, Denise and Gaillochet, Philippe, Chem. Non-Aqueous Solvents, ed. by Lagowski, J.J., (Academic Press, New York, 1978) p. 251275.CrossRefGoogle Scholar
16. Cady, H.P., J. Phys. Chem., 1, 707 (1897).CrossRefGoogle Scholar
17. Seely, C.A., Chem. News, 23, 169 1871); J. Franklin Inst., 61, 110 (1871).Google Scholar
18. Myakinenkov, V.I., Nogin, V.M. and Anokhin, B.G., Inorg. Mater., 10, 16861689 (1974).Google Scholar
19. Morgan, P.E.D. and Pugar, E.A., J. Am. Ceram. Soc., 68, 699703 (1985).Google Scholar
20. Pugar, E.A. and Morgan, P.E.D., Abstr. #23-BP-86, Am. Ceram. Soc. Spring Meeting, Chicago, IL, April, 1986.Google Scholar
21. Morgan, P.E.D., Better Ceramics Through Chemistry II, ed. by Brinker, C.J., Clark, D.E. and Ulrich, D.R., (Materials Research Society, Pittsburgh, 1986) p. 751.Google Scholar
22. Finne, R.M. and Klein, D.L., J. Electrochem. Soc., 114, 965970 (1967).Google Scholar
23. Lee, D.B., J. Appl. Phys., 40, 45694574 (1969).Google Scholar
24. Lee, D.B., German Patent No. 1953665, June 18, 1970.Google Scholar
25. Seyferth, Dietmar, Wiseman, Gary H. and Prud'homme, Christian, J. Am. Ceram. Soc., 66, C1314 (1983).CrossRefGoogle Scholar
26. Penn, B.G., Ledbetter, F.E., Clemons, J.M., Daniels, J.G., J. Appl. Polym. Sci., 27, 3751 (1982).CrossRefGoogle Scholar
27. Wynne, Kenneth J., and Rice, Roy W., Ann. Rev. Mater. Sci., 14, 311 (1984).Google Scholar
28. Wada, N., Solin, S.A., Wong, J. and Procházka, S., J. Non-Cryst. Solids, 43, 715 (1981).Google Scholar
29. Wróbel, A.M. and Kryszewski, M., Commun. Table Ronde Int. Trait. Surf. Polm. Plasma, RT 3 1977.Google Scholar
30. Closson, W.D, and Gray, H.B, J. Am. Chem. Soc., 85, 290 (1963).Google Scholar
31. Williams, E.A. and Cargioli, J.D., Chap, in Annual Reports on NMR Spectroscopy, Vol. 9 (Academic Press, London, 1979) p.239.Google Scholar
32. Hayashi, Shigenobu and Hayamizu, Kikuko, Yamasaki, Satoshi, Matsuda, Akihisa, and Tanaka, Kazunobu, J. Appl. Phys., 60, 1839 (1986).Google Scholar
33. Cutler, I.B., U.S. Patent 3,754,076, Aug. 1973.Google Scholar
34. Pugar, E.A. and Morgan, P.E.D., patents pending.Google Scholar