Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T11:45:29.287Z Has data issue: false hasContentIssue false

Low Damage Magnetron Reactive Ion Etching of GaAs

Published online by Cambridge University Press:  26 February 2011

G. Mclane
Affiliation:
U. S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
M. Meyyappan
Affiliation:
Scientific Research Associates, Inc., Glastonbury, CT 06033
M. W. Cole
Affiliation:
U. S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
H. S. Lee
Affiliation:
U. S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
R. Lareau
Affiliation:
U. S. Army Electronics Technology and Devices Laboratory, Fort Monmouth, NJ 07703
M. Namaroff
Affiliation:
Materials Research Corporation, Orangeburg, NY 10962
J. Sasserath
Affiliation:
Materials Research Corporation, Orangeburg, NY 10962
Get access

Abstract

Magnetron reactive ion etching is an attractive alternative to reactive ion etching since it has the potential for producing minimal surface damage while still retaining the advantages of reactive ion etching. We report here the results of a study of GaAs magnetron ion etching using Freon-12 and silicon tetrachloride etch gases. Differences are found in etch profiles and surface region characteristics of GaAs samples etched by the two gases. The relevant mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, Y. L. and Holloway, P. H., J. Vac. Sci. Technol. B, 2, 613 (1984).Google Scholar
2. Chiang, S. Y. and Pearson, G. L., J. Applied Phys., 46, 2986 (1975).CrossRefGoogle Scholar
3. Pang, S. W., Lincoln, G. A., McClelland, R. W., DeGraff, P. D., Geis, M. W. and Piacentini, W. J., J. Vac. Sci. Technol. B, 1, 1334 (1983).Google Scholar
4. Pearton, S. J., et al., J. Applied Phys, 65, 1281 (1989).Google Scholar
5. McLane, G. F., Meyyappan, M., Lee, H. and Buchwald, W., J. Vac. Sci. Technol. A, 9, 935 (1991).CrossRefGoogle Scholar
6. Pang, S. W., J. Electrochem. Soc, 133, 784 (1986).Google Scholar
7. Pearton, S. J., et al., J. Applied Phys., 66, 2061 (1989).Google Scholar
8. McLane, G. F., Meyyappan, M., Taysing-Lara, M., Cole, M.W. and Eckart, D., Proceedings of the Second International Conference on Electronics Materials, MRS, p. 433, 1991.Google Scholar
9. McLane, G. F., Meyyappan, M., Cole, M.W. and Wrenn, C., J. Appl. Phys., 62, 695 (1991).Google Scholar
10. Van Daele, P., Lootens, D. and Demeester, P., Vacuum, 41, 906 (1990).Google Scholar
11. Cole, M. W., Salimian, S., Cooper, C. B., Lee, H. S., and Dutta, M., Scanning 91, Atlantic City, NJ, April 1991.Google Scholar
12. Lootens, D., Van Daele, P., Demeester, P., and Clauws, P., J. Applied Phys., 70 (1), 221 (1991).Google Scholar
13. Stern, W. B. and Liao, P. F., J. Vac. Sci. Technol. B, 1, 1053 (1983).Google Scholar