Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-29T06:49:37.779Z Has data issue: false hasContentIssue false

Laser-Modified Chemical Beam Epitaxy of InGaAs/GaAs Multiple Quantum Wells Using Tris-Dimethylaminoarsenic

Published online by Cambridge University Press:  21 February 2011

H.K. Dong
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093–0407
N.Y. Li
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093–0407
C.W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093–0407
Get access

Abstract

We report for the first time laser-modified chemical beam epitaxy (CBE) of InGaAs/GaAs multiple quantum well (MQW) structures using trimethylindium (TMIn), triethylgallium (TEGa), and tris-dimethylaminoarsenic (TDMAAs), a safer alternative to arsine. X-ray rocking curve (XRC) and low-temperature photoluminescence (PL) measurements were used to characterize the pseudomorphic strained quantum well structures. As determined by the X-ray simulation, laser irradiation during the InGaAs well growth was found to enhance the InGaAs growth rate and reduce the indium concentration in the substrate temperature range studied, 440-S00°C, where good interfaces can be achieved. We attribute these changes to laser-enhanced decomposition of TEGa and laser-enhanced desorption of TDMAAs. With laser irradiation, lateral variation of PL exciton peaks was observed, and the PL peaks became narrower.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aoyagi, Y., Kanazawa, M., Doi, A., Iwai, S. and Namba, S., J. Appl. Phys. 60, 3131 (1986).Google Scholar
2 Donnelly, V.M., Tu, C.W., Beggy, J.C., McCrary, V.R., Lamont, M.G., Harris, T.D., Baiochi, F.A. and Farrow, R.C., Appl. Phys. Lett. 52, 1065 (1988).Google Scholar
3 Sugiura, H., Yamada, T. and Iga, R., Jpn.J. Appl. Phys. 29, Ll (1990).Google Scholar
4 Dong, H.K., Liang, B.W., Ho, M.C., Hung, S. and Tu, C.W., J. Cryst. Growth 124, 181 (1992).Google Scholar
5 Sugioka, K. and Toyoda, K., Appl. Phys. Lett. 61, 2817 (1992).Google Scholar
6 Roberts, J.C., Boutros, K.S., Bedair, S.M., and Look, D.C., Appl. Phys. Lett. 64, 2397 (1994).Google Scholar
7 Iga, R., Yamada, T., and Sugiura, H., Appl. Phys. Lett. 64, 983 (1994).Google Scholar
8 Iga, R., Yamada, T., and Sugiura, H., J. Cryst. Growth 136, 273 (1994).Google Scholar
9 Abernathy, C.R., Wisk, P.W., Bohling, D.A., and Muhr, G.T., Appl. Phys. Lett. 60, 2421 (1992).Google Scholar
10 Dong, H.K., Li, N.Y., Tu, C.W., Geva, M., and Mitchel, W.C., Mater. Res. Soc. Symp. Proc. 340, 173 (1994).Google Scholar
11 Zimmer, M.H., Hövel, R., Brysch, W., and Brauers, A., J. Cryst. Growth 107, 348 (1991).Google Scholar
12 Zimmermann, G., Protzmann, H., Marschner, T., Zsebök, O., Stolz, W., Göbel, E.O., Gimmnich, P., Lorberth, J., Filz, T., Kurpas, P., and Richter, W., J. Cryst. Growth 129, 37 (1993).Google Scholar
13 Fujii, K., Suemune, I., Koui, T., and Yamanishi, M., Appl. Phys. Lett. 60, 1498 (1992).Google Scholar
14 Fujii, K., Suemune, I., and Yamanishi, M., Appl. Phys. Lett. 61, 2577 (1992).Google Scholar
15 Koui, T., Suemune, I., Miyakoshi, K., Fujii, K., and Yamanishi, M., Jpn.J. Appl. Phys. 31, L1272 (1992).Google Scholar
16 Salim, S., Lu, J.P., Jensen, K.F., and Bohling, D.A., J. Cryst. Growth 124, 16 (1992).Google Scholar
17 Bohling, D.A., Jensen, K.F., and Abernathy, C.R., J. Cryst. Growth 136, 118 (1994).Google Scholar
18 Matsumura, K., Inoue, D., Nakano, H., Sawada, M., Harada, Y., and Nakakado, T., Jpn.J. Appl. Phys. 68, L166 (1991).Google Scholar
19 Chand, N., Becker, E.E., van der Ziel, J.P., Chu, S.N.G., and Dutta, N.K., Appl. Phys. Lett. 58, 1704 (1991).Google Scholar
20 Dong, H.K., Li, N.Y., and Tu, C.W., to be published in the Proceeding of the 21st International Symposium on Compound Semiconductors.Google Scholar
21 Hung, S.C.H., Dong, H.K., and Tu, C.W., Mater. Res. Soc. Symp. Proc. 340, 35 (1994).Google Scholar
22 Tanner, B.K., Adv. X-ray Anal. 33, 1 (1990).Google Scholar
23 Bastard, G. and Brum, J.A., IEEE J. Quantum Electron. QE-22, 1625 (1986).Google Scholar
24 Dong, H.K., Li, N.Y., Wong, W.S., and Tu, C.W., to be submitted.Google Scholar
25 Houghton, D.C., J. Appl. Phys. 70, 2136 (1991).Google Scholar
26 Houghton, D.C., Davies, M., and Dion, M., Appl. Phys. Lett. 64, 505 (1994).Google Scholar
27 Dong, H.K., Li, N.Y., Tu, C.W., Geva, M., and Mitchel, W.C., to be published in J. Electron. Mater. Google Scholar