Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T07:15:18.740Z Has data issue: false hasContentIssue false

Laser-induced Reactions in a Deep UV Resist System: Studied with Picosecond Infrared Spectroscopy

Published online by Cambridge University Press:  15 February 2011

T. Lippert
Affiliation:
Division of Chemical Science and Technology, Mail Stop J-567, Los Alamos National Laboratory, Los Alamos, NM 87545, lippert@lanl.gov
A. Koskelo
Affiliation:
Division of Chemical Science and Technology, Mail Stop J-567, Los Alamos National Laboratory, Los Alamos, NM 87545, lippert@lanl.gov
P. O. Stoutland
Affiliation:
Division of Chemical Science and Technology, Mail Stop J-567, Los Alamos National Laboratory, Los Alamos, NM 87545, lippert@lanl.gov
Get access

Abstract

One of the most technologically important uses of organic photochemistry is in the imaging industry where radiation-sensitive organic monomers and polymers are used in photoresists. A widely-used class of compounds for imaging applications are diazoketones; these compounds undergo a photoinduced Wolff rearrangement to form a ketene intermediate which subsequently hydrolyses to a base-soluble, carboxylic acid. Another use of organic molecules in polymer matrices is for dopant induced ablation of polymers. As part of a program to develop diagnostics for laser-driven reactions in polymer matrices, we have investigated the photo-induced decomposition of 5-diazo-2,2-dimethyl-l,3-dioxane-4,6-dione (5-diazo Meldrum's acid, DM) in a PMMA matrix using picosecond infrared spectroscopy. In particular, irradiation of DM with a 60 ps 266 nm laser pulse results in immediate bleaching of the diazo infrared band (v = 2172 cm-1). Similarly, a new band appears within our instrument response at 2161 cm-1 (FWHM = 29 cm-1) and is stable to greater than 6 ns.; we assign this band to the ketene photoproduct of the Wolff rearrangement. Using deconvolution techniques we estimate a limit for its rate of formation of τ < 20 ps. The linear dependence of the absorbance change with the pump power (266 nm) even above the threshold of ablation suggest that material ejection take place after 6ns.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 (a) Bowden, M. J., Materials for Microlithography edited by Thompson, L. F., Willson, C. G., Frechet, J. M. J., (A. C. S. Symposium Series 266, 1984), pp 39. (b) E. Reichmanis, C. W. Wilkins, Microelectronic Polymers, edited by M. S. Htoo, (Marcel Dekker Inc. New York, 1989), pp. 1–66. (c) D. S. Soane and Z. Martynenko, Polymers in Microelectronics. (Elsevier Amsterdam, 1989) pp 1–276.Google Scholar
2 (a) Pacansky, J. and Johnson, D. J., J. Electrochem. Soc. 124, 862 (1977),. (b) J. Pacansky and J. Lyerla, I. B. M. J. Res. Develop. 23, 42 (1979). (c) J. Pacansky, Polymer Eng. Sci. 20, 1049 (1980).Google Scholar
3 See, for example: (a) Lippert, T., Stebani, J., Ihlemann, J., Nuyken, O., and Wokaun, A., Angew. Makromol. Chem. 213, 127 (1993). (b) H. Hiraoka and S. Lazare, Appl. Surf. Sci. 46, 342 (1990). (c) H. Fukumura, S. Mibuka, S. Eura, H. Masuhara and N. Nishi, J. Phys. Chem. 97, 13761 (1993). (d) R. Srinivasan and B. Braren, Appl. Phys. A45, 289 (1988). (e) C. R. Davis, F. D. Egitto and S. L. Buchwalter, Appl. Phys. B54, 227 (1992). (f) Y. Kawamura, K. Toyoda and S. Namba, Appl. Phys. Lett. 40, 374 (1982).Google Scholar
4 Widely used in this regard are a variety of diazonaphthoquinones in Novalak resins, including the commercially available naphthoquinone diazides (Shipley-AZ1350J, Kodak-Photoresist 820, Hunt-HPR 204). See: Rabek, J. F., Mechanism of Photophysical Processes and Photochemical Reactions in Polymers. (John Wiley & Sons, Chichester, 1987), pp. 413464.Google Scholar
5 Wolff rearrangements are widely used for various synthetic applications. See, for example:(a) Redmore, D. and Gutsche, C. D., Adv. Alicyclic Chem. 3, 125 (1971). (b) J. March, Advanced Organic Chemistry: (McGraw-Hill: New York, 1985), p. 974.Google Scholar
6 (a) Delaire, J. A., Faure, J., Hassine-Renou, F., Soreau, M. and Mayeaux, A., Nouv. J. Chim. 11, 15 (1987). (b) J. J. M. Vleggaar, A. H. Huizer, P. A. Kraakman, W. P. M. Nijssen, R. J. Visser and C. A. G. O. Varma, J. Am. Chem. Soc. 116, 11754 (1994). (c) K. Tanigaki and T. W. Ebbesen, J. Phys. Chem. 93, 4531 (1989).Google Scholar
7 A key component of our program is to study reactions directly in the polymer matrix. In the case of diazoketones in particular, the reactivity can be completely different in solution. For example, in methanol the product after N2 loss is Meldrum's acid: Hayashi, I., Okada, T. and Kawanishi, M., Bull. Chem. Soc., Jpn. 43, 2506 (1970).Google Scholar
8 (a) Willson, C. G., Clecak, N. J., Grant, B. D. and Twieg, R. J., Electrochem. Soc. Preprints 696 (1980). (b) B. D. Grant; N. J. Clecak, R. J. Twieg and C. G. Willson, IEEE Trans. Electron Devices 28,1300, (1981). (c) C. G. Willson, R. D. Miller and D. R. McKean, Proc. SPIE. (Advances in Resist Technol. and Processing IVV 771 (1987).Google Scholar
9 Fujiwara, H., Nakajima, Y., Fukumura, H. and Masuhara, H., J. Phys. Chem. 99, 11481 (1995).Google Scholar
10 (a) Andraos, J., Chiang, Y., Huang, C. G., Kresge, A. J. and Scaiano, J. C., J. Am. Chem. Soc. 115, 10605 (1993). (b) M. Barra, T. A. Fisher, G. J. Cernigliaro, R. Sinta and J. C. Scaiano, J. Am. Chem. Soc. 114, 2630 (1992).Google Scholar
11 (a) Nikolaev, V. A. and Khimich, N. N., Chim. geterotsikl. Soed. 321 (1985). (b) T. Livinghouse and R. J. Stevens, J. Am. Chem. Soc. 100, 6479 (1978). (c) E. Voigt and H. Meier, Chem. Ber. 108, 3326 (1975).Google Scholar
12 (a) reference 4c. (b) Tangaki, K. and Ebbesen, T. W., J. Am. Chem. Soc. 109, 5583 (1987). W. J. Bouma, R. H. Nobes, L. Radom and C. E. Woodward, J. Org. Chem. 47, 1869 (1982). K. Tanaka and M. J. Yoshimine, J. Am. Chem. Soc. 102,7655 (1980).Google Scholar
13 Winnik, M. A., Wang, F., Nivaggioi, T., Hruska, Z., Fukumura, H. and Masuhara, H., J. Am. Chem. Soc. 113,. 9702 (1991).Google Scholar
14 Ulbricht, M., Thurner, J.-U., Siegmund, M. and Tomaschewski, G., Z. Chem. 28, 102 (1988).Google Scholar
15 Commercial photoresists typically use Novolak resin as the polymer matrix. Here, we have choosen PMMA to avoid having the matrix absorb some of the UV excitation pulse. Later studies will examine the effect of different matrices.Google Scholar
16 (a) Doorn, S. K., Dyer, R. B., Stoutland, P. O. and Woodruff, W. H., J. Am. Chem. Soc. 115, 6398 (1993). (b) P. O. Stoutland, R. B. Dyer and W. H. Woodruff, Science 257,1913 (1992).Google Scholar
17 A typical film was prepared by dissolving 750 mg of PMMA, and 200 mg of DM in 15 mL of THF. This was coated onto a polypropylene sheet (0.5 - 1.0 mm thick) with a #20 Mayer rod (wet thickness ˜50 μ.m). These were dried in air and stored in the dark. Monitoring the films with UV-vis and IR spectroscopy showed no decomposition over 2 weeks.Google Scholar
18 This agrees with the previously reported values of 0.6 and 1.0: references 9, and 13.Google Scholar