Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-frvt8 Total loading time: 0.277 Render date: 2022-10-02T00:32:50.620Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

LaB6 nanowires and their field emission properties

Published online by Cambridge University Press:  26 February 2011

Han Zhang
Affiliation:
hanzh@physics.unc.edu, University of North Carolina at Chapel Hill, Curriculum in Applied and Materials Sciences, 159-A, Phillips Hall, CB#3255,, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
Jie Tang
Affiliation:
Tang.Jie@nims.go.jp, National Institute for Materials Science, Japan
Qi Zhang
Affiliation:
qizhang@physics.unc.edu, University of North Carolina at Chapel Hill, Department of Physics and Astronomy, United States
Gongpu Zhao
Affiliation:
zgp@physics.unc.edu, University of North Carolina at Chapel Hill, Department of Physics and Astronomy, United States
Guang Yang
Affiliation:
yangg@physics.unc.edu, University of North Carolina at Chapel Hill, Department of Physics and Astronomy, United States
Jian Zhang
Affiliation:
jzhang@physics.unc.edu, University of North Carolina at Chapel Hill, Department of Physics and Astronomy, United States
Otto Zhou
Affiliation:
zhou@physics.unc.edu, University of North Carolina at Chapel Hill, Curriculum in Applied and Materials Sciences, United States
Luchang Qin
Affiliation:
lcqin@physics.unc.edu, University of North Carolina at Chapel Hill, Curriculum in Applied and Materials Sciences, United States
Get access

Abstract

For field-induced electron emission, the two factors that enable a high emission current density at low applied voltages are (a) low work function of the emitter and (b) sharpness of the emitter tip. We have developed and applied a chemical vapor deposition method to synthesize single-crystalline LaB6 nanowires for applications as point electron emitters. The crystallographic orientation of the grown nanowires can be controlled by the catalysts used in synthesis and their typical diameter is ranged from below 20 nm to over 100 nm. The nanowires’ tip is either hemispherical or flat top with rectangular cross-section depending on the catalyst being utilized. The field emission properties have also been measured from the single nanowire emitters and the results are discussed for applications as point electron sources used in high performance electron optical instruments such as the transmission and scanning electron microscopes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gesley, M., Swanson, L. W., Surface Sci. 146, 583 (1984).Google Scholar
[2] Swanson, L. W., Gesley, M. A., Davis, P. R., Surface Sci. 107, 263 (1981).CrossRefGoogle Scholar
[3] Brodie, I., Spindt, C. A., Advances in Electronics and Electron Physics, Vol. 83, (Ed: Hawkes, P. W.), Academic Press, San Diego 1992, Ch. 2.Google Scholar
[4] Chernozatonskii, L. A., Gulyaev, Y. V., Kosakovskaja, Z. J., Sinitsyn, N. I., Torgashov, G. V., Zakharchenko, Y. F., Fedorov, E. A., Val'chuk, V. P., Chem. Phys. Lett. 233, 63 (1995).Google Scholar
[5] Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., Smalley, R. E., Science 269, 1550 (1995).Google Scholar
[6] Heer, W. A. D., Chatelain, A., Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
[7] de Jonge, N., Lamy, Y., Schoots, K., Oosterkamp, T. H., Nature 420, 393 (2002).CrossRefGoogle Scholar
[8] Zhang, J., Tang, J., Yang, G., Qiu, Q., Qin, L.-C., Zhou, O., Adv. Mater. 16, 1219 (2004).Google Scholar
[9] de Jonge, N., Bonard, J. M., Phil. Trans. R. Soc. Lond. A 362, 2239 (2004).Google Scholar
[10] de Jonge, N., Allioux, M., Oostveen, J. T., Teo, K. B. K., Milne, W. I., Phys. Rev. Lett. 94, 186807 (2005).CrossRefGoogle Scholar
[11] Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., Lieber, C. M., J. Phys. Chem. B 105, 743 (2001).CrossRefGoogle Scholar
[12] Dean, K. A., Chalamala, B. R., Appl. Phys. Lett. 75, 3017 (1999).CrossRefGoogle Scholar
[13] Lafferty, J.M., J. Appl. Phys. 22, 299 (1951).CrossRefGoogle Scholar
[14] Zhang, H., Tang, J., Zhang, Q., Zhao, G., Yang, G., Zhang, J., Zhou, O., Qin, L.-C., Adv. Mater. (2006) in press.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

LaB6 nanowires and their field emission properties
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

LaB6 nanowires and their field emission properties
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

LaB6 nanowires and their field emission properties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *