Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T09:28:48.037Z Has data issue: false hasContentIssue false

Kinetics of palladium particles on LiNbO3: an origin of the polarization-dependent catalysis

Published online by Cambridge University Press:  14 February 2012

Seungchul Kim
Affiliation:
The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, U.S.A.
Michael Rutenberg Schoenberg
Affiliation:
The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, U.S.A.
Andrew M. Rappe
Affiliation:
The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, U.S.A.
Get access

Abstract

Using ab-initio calculations and kinetic Monte Carlo simulations, we demonstrate that the deposition geometries of palladium are strongly dependent on the polarization direction of the LiNbO3 substrate. Different stoichiometries and atomic structures of the positively and the negatively polarized substrates cause substantially different bonding configurations of palladium and energy barriers for the movement of Pd clusters. Our simulations predict that palladium atoms form bulky clusters on the positive surface, while they are deposited in a dispersed or planar manner on the negative surface at moderate temperature. We suggest that Inoue and coworkers’ observation [J. Phys. Chem.88, 1148 (1984)] that the catalytic activity of palladium depends on polarization direction of LiNbO3 substrate is, at least in part, due to differences in the geometric structures of palladium and the LiNbO3 surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, Y., Yoshioka, I., and Sato, K., J. Phys. Chem. 88, 1148 (1984)Google Scholar
2. Noguera, C., J. Phys.:Condens. Matter 12, R367 (2000)Google Scholar
3. Nørskov, J. K., Bligaard, T., Hvolbæk, B., Abild-Pedersen, F., Chorkendorff, I., and Christensen, C. H., Chem. Soc. Rev. 37, 2163 (2008)Google Scholar
4. Zhao, M. H., Bonnell, D. A., and Vohs, J. M., J. Vac. Sci. Technol. A 27, 1337 (2009)Google Scholar
5. Yun, Y., Pilet, N., Schwarz, U. D., and Altman, E. I., Surf. Sci. 603, 3145 (2009)Google Scholar
6. Saito, A., Matsumoto, H., Ohnisi, S., Akai-Kasaya, M., Kuwahara, Y., and Aono, M., Jap. J. Appl. Phys. 43, 2057 (2004)Google Scholar
7. Levchenko, S. V. and Rappe, A. M., Phys. Rev. Lett. 100, 256101 (2008)Google Scholar
8. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
9. Rappe, A. M., Rabe, K. M., Kaxiras, E., and Joannopoulos, J. D., Phys. Rev. B 41, 1227 (1990)Google Scholar
10. Ramer, N. J. and Rappe, A.M., Phys. Rev. B 59, 12471 (1999)Google Scholar
11. Henkelman, G., Uberuaga, B. P., and Jónsson, H., J. Chem. Phys. 113, 9901 (2000)Google Scholar
12. Giannozzi, P. et al. ., J. Phys. Condens. Matter 21, 395502 (2009)Google Scholar
13. Brune, H., Surf. Sci. Rep. 31, 121 (1998)Google Scholar
14. Hammer, B., Morikawa, Y., and Nørskov, J. K., Phys. Rev. Lett. 76, 2141 (1996)Google Scholar
15. Kim, S., Schoenberg, M. R., and Rappe, A. M., Phys. Rev. Lett. 107, 076102 (2011)Google Scholar