Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T13:47:26.211Z Has data issue: false hasContentIssue false

Iron and Nickel Solubilities in Heavily Doped Silicon and their Energy Levels in the Silicon Band Gap at Elevated Temperatures

Published online by Cambridge University Press:  10 February 2011

S.A. McHugo
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
R.J. McDonald
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
A.R. Smith
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
D.L. Hurley
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
A.A. Istratov
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
H. Hieslmair
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
E.R. Weber
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720USA
Get access

Abstract

We have directly measured the solubility of iron and nickel in high and low boron-doped silicon using Instrumental Neutron Activation Analysis. Boron doping levels were 1.5×1019 and 6.5× 1014 atoms/cm3. Iron and nickel impurity concentrations were measured after extended indiffusions at 800, 900, 1000 and 1100°C for iron and 600, 700 and 800°C for nickel. We have measured a significant enhancement of Fe and Ni concentrations in high boron-doped silicon as compared to low boron-doped silicon. Based on these measurements, we show the iron donor energy level shifts towards the valence band with increased temperature, e.g. at 900°C the donor level is 0.24eV above the valence band as opposed to 0.39eV at room temperature. These results demonstrate that the impurity energy level shift with temperature must be accounted for in any prediction of segregation gettering of metal impurities into heavily doped substrates and heavily implanted doping layers. Additionally, our results suggest that either Ni solubility is greatly enhanced and/or the Ni diffusivity is greatly decreased with high boron doping of silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tice, W. K. and Tan, T. Y., Mat. Res. Soc. Symp. Proc. 2, 367380, (1981)Google Scholar
2. Gilles, D., Weber, E. R. and Hahn, S. K., Phys. Rev. Lett. 64, 196, (1990)Google Scholar
3. The National Technology Roadmap for Semiconductors, (Semiconductor Industry Assoc., San Jose, CA, 110, (1994)Google Scholar
4. Weber, E. R. and Gilles, D., Electrochemical Society Meeting, 585, (1990)Google Scholar
5. Reiss, H., Fuller, C. S. and Morin, F. J., Bell Systems Tech. J. 35, 535, (1956)Google Scholar
6. Shockley, W. and Last, J. T., Phys. Rev. 107, 392, (1957)Google Scholar
7. Troutman, R. R., IEEE Electron Devices Lett. EDL–4, 438, (1983)Google Scholar
8. Hall, R. N. and Racette, J. H., J. Appl. Phys. 35, 379, (1964)Google Scholar
9. Cagnina, S. F., J. Electrochem. Soc. 116, 498, (1969)Google Scholar
10. O'Shaughnessy, T. A., Barber, H. D., Thompson, D. A. and Heasell, E. L., J. Electrochem. Soc. 121, 1350, (1974)Google Scholar
11. Gilles, D., Schröter, W. and Bergholz, W., Phys. Rev. B. 41, 5770, (1990)Google Scholar
12. Sano, M., Sumita, S., Shigematsu, T. and Fujino, N., Semiconductor Silicon, 784, (1994)Google Scholar
13. Aoki, M., Itakura, A. and Sasaki, N., Appl. Phys. Lett. 66, 2709, (1995)Google Scholar
14. Miyazaki, M., Miyazaki, S., Ogushi, S., Ochiai, T., Sano, M. and Shigematsu, T., Jpn. J. Appl. Phys. 36, L380, (1997)Google Scholar
15. Smith, A. R., McDonald, R. J., Manini, H., Hurley, D. L., Norman, E. B. and Vella, M. C., J. Electrochem. Soc. 143, 339, (1996)Google Scholar
16. Kimerling, L. C. and Benton, J. L., Physica. 116B, 297, (1983)Google Scholar
17. Weber, E. R., Appl. Phys. A. 30, 1, (1983)Google Scholar
18. Walz, D., Joly, J.P., Falster, R. and Kamarinos, G., Jpn. J. Appl. Phys., 34, 4091, (1995)Google Scholar
19. Reiss, H., Fuller, C.S. and Morin, F.J., The Bell System Technical J. 35, 535 (1956)Google Scholar
20. Istratov, A.A., Flink, C., Heiser, T., Hieslmair, H. and Weber, E.R., Phys.Rev.Lett., submitted for publication)Google Scholar