Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-10T08:24:18.912Z Has data issue: false hasContentIssue false

Interdiffusion in Coherent Si0.90Ge0.10/Si0.95Ge0.05 Superlattices

Published online by Cambridge University Press:  01 February 2011

D. B. Aubertine
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
P. C. McIntyre
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

We present the use of x-ray scattering from Si1-XGeX/Si1-YGeY superlattices as a tool for measuring the concentration dependence of interdiffusivity in Si/SiGe epitaxial thin films. Although x-ray scattering from compositionally modulated films is an ultra-high-sensitivity technique for measuring interdiffusion in a variety of systems, the concentration dependence of Si/SiGe interdiffusion complicates its interpretation. We show that these complications can be avoided using Si1-XGeX/Si1-YGeY superlattices with a small compositional modulation. This strategy is assessed using numerical simulations of both interdiffusion and dynamical x-ray diffraction. We demonstrate its effectiveness by measuring the activation enthalpy and exponential prefactor for interdiffusion in compressively strained Si0.925Ge0.075. The results are 4.38 ± 0.05 eV and 36 ± 9 cm2/s respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mooney, P.M., Koester, S.J., Ott, J.A., Jordan-Sweet, J.L., Chu, J.O., and Chan, K.K., Mat Res Soc Symp Proc 686 (2001).Google Scholar
2 Koester, S. J., Rim, K., Chu, J. O., Mooney, P. M., Ott, J. A., and Hargrove, M. A., Appl Phys Lett 79 (14), 2148 (2001).Google Scholar
3 Currie, M. T., Leitz, C. W., Langdo, T. A., Taraschi, G., Fitzgerald, E. A., and Antoniadis, D. A., J Vac Sci Technol B, Microelectron. Nanometer Struct. (USA) 19 (6), 2268 (2001).Google Scholar
4 Klauk, H., Jackson, T. N., Nelson, S. F., and Chu, J. O., Appl Phys Lett 68 (14), 1975 (1996).Google Scholar
5 Aubertine, D.B., Mander, M.A., Ozguven, N., Marshall, A.F., McIntyre, P. C., Chu, J. O., and Mooney, P. M., J Appl Phys 92 (9), 5027 (2002).Google Scholar
6 Mcvay, G. L. and Ducharme, A. R., Phys Rev B 9 (2), 627 (1974).Google Scholar
7 Zangenberg, N. R., Hansen, J. L., Fage-Pedersen, J., and Larsen, A. N., Phys Rev Lett 8712 (12), 5901 (2001).Google Scholar
8 Cowern, N. E. B., Kersten, W. J., De Kruif, R. C. M., Van Berkum, J. G. M., De Boer, W. B., Gravesteijn, D. J., and Bulle-Liewma, C. W. T., presented at the Fourth International Symposium on Process Physics and Modeling in Semiconductor Devices, Pennington, NJ, USA, 1996.Google Scholar
9 Strohm, A., Voss, T., Frank, W., Laitinen, P., and Raisanen, J., Z. Met.kd. (Germany) 93 (7), 737 (2002).Google Scholar
10 Aziz, M. J., Appl Phys Lett 70 (21), 2810 (1997).Google Scholar
11 Aubertine, D. B., Ozguven, N., McIntyre, P. C., and Brennan, S., J Appl Phys 94 (3), 1557 (2003).Google Scholar
12 Greer, A.L. and Spaepen, F., in Synthetic modulated structures, edited by Chang, L. L. and Giesson, B. C. (Academic Press, Orlando, 1985).Google Scholar
13 Philofsky, E. M. and Hilliard, J. E., J Appl Phys 40 (5), 2198 (1969).Google Scholar
14 Lessmann, A., Brennan, S., Munkholm, A., Schuster, M., Riechert, H., and Materlik, G., Phys Rev B (Condensed Matter) 59 (16), 10801 (1999).Google Scholar
15 Bartels, W. J., Hornstra, J., and Lobeek, D. J. W., Acta Crystallogr. A, Found. Crystallogr. (Denmark) A42 (pt. 6), 539 (1986).Google Scholar