Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T13:30:47.662Z Has data issue: false hasContentIssue false

In-Situ Surface Cleaning of Ge(111) and Si(100) for Epitaxial Growth of Ge AT 300°C Using Remote Plasma Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

S. V. Hattangady
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
R. A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
G. G. Fountain
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
D. J. Vitkavage
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
R. J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
Get access

Abstract

We have demonstrated low temperature (300°C) Ge epitaxy on Ge(111) and on Si(100) substrates. Critical to this epitaxy has been the use of wet chemistry to produce controlled, thin oxides on the substrates prior to loading into the reactor and an in-situ 300°C hydrogen plasma treatment to remove those oxides from the semiconductor surfaces. Reflection high energy electron diffraction shows the plasma treatments to be effective in producing clean, well-ordered surfaces. This represents a new approach for in-situ cleaning of Ge(111) and Si(100) surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sheldon, P. B., Yacobi, B. A., Jones, K. M., and Hunlany, D. J., J. Appl. Phys. 58, 4186 (1985).Google Scholar
2Tsaur, B. Y., Greis, M. W., Fan, J. C. C., and Gale, R. P., Appl. Phys. Lett. 38, 779 (1981).Google Scholar
3Outlaw, R. A. and Hopson, P. Jr., J. Appl. Phys. 55, 1461 (1984).Google Scholar
4Andreatta, R. W., Abele, C. C., Osmundsen, J. F., Eden, J. G., Lubben, D., and Greene, J. E., Appl. Phys. Lett. 40, 183 (1982).Google Scholar
5Rudder, R. A., Fountain, G. G., and Markunas, R. J., J. Appl. Phys. 60, 3519 (1986).Google Scholar
6Russell, G. J., Surf. Sci. 19, 217 (1970).Google Scholar
7Henderson, R. C. and Helm, R. F., Surf. Sci. 30, 310 (1972).Google Scholar
8Suzuki, S. and Itoh, T., J. Appl. Phys 54, 1466 (1983).Google Scholar
9Grimaldi, M. G., Maenpaa, M., Paine, B. M., Nicolet, M. A., Lau, S. S., and Tseng, W. F., J. Appl. Phys 52, 1351 (1981).Google Scholar
10Lander, J. J., Gobeli, G. W., and Morrison, J., J. Appl. Phys 34, 2298 (1963).Google Scholar
11White, S. J. and Woodruff, D. P., Surf. Sci 63, 254 (1977).Google Scholar