Hostname: page-component-546b4f848f-sw5dq Total loading time: 0 Render date: 2023-06-02T00:44:15.076Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Insertion of Inorganic-Biomolecular Nanohybrid into Eucaryotic Cell

Published online by Cambridge University Press:  15 March 2011

Seo-Young Kwak
Affiliation:
School of Chemistry & Molecular Engineering, Seoul National University, Seoul 151-747, KOREA
Sung-Ho Hwang
Affiliation:
School of Chemistry & Molecular Engineering, Seoul National University, Seoul 151-747, KOREA
Yong-Joo Jeong
Affiliation:
School of Chemistry & Molecular Engineering, Seoul National University, Seoul 151-747, KOREA
Jong-Sang Park
Affiliation:
School of Chemistry & Molecular Engineering, Seoul National University, Seoul 151-747, KOREA
Jin-Ho Choy
Affiliation:
School of Chemistry & Molecular Engineering, Seoul National University, Seoul 151-747, KOREA
Get access

Abstract

It has been clearly demonstrated that ATP could be intercalated into inorganic layered double hydroxide (LDH), giving rise to a biomolecular-inorganic nanohybrid with preserving its physico-chemical and biological integrity. It shows a remarkable transfer efficiency of ATP into target cells by alleviating an electrical repulsion at the cell walls due to the neutralization of negative charge of phosphates by positive hydroxide layers. From cellular uptake experiment with laser scanning confocal fluorescence microscopy, it is revealed that the FITC-LDH hybrid is effectively transferred into 293 cells. Such an unique feature of biomolecule-LDH hybrid will open a new field of reserving and delivering genes, drugs and other functional biomolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choy, J. H., Kwak, S. Y., Park, J. S., and Jeong, Y. J., J. Mater. Chem., 11(6), 16711674 (2001)CrossRefGoogle Scholar
2. Choy, J. H., Kwak, S. Y., Jeong, Y. J., and Park, J. S., Angew. Chem. Int. Ed. as a highlight comm. 39(22), 40424045 (2000)Google Scholar
3. Wickstrom, E. L., Bacon, T. A., Gonzalez, A., Freeman, D. L., Lyman, G. H., Wickstrom, E., Proc. Natl. Acad. Sci. USA 85, 1028 (1988).CrossRefGoogle Scholar
4. Lee, R. J. and Low, P. S., J. Biol. Chem. 269, 31983204 (1997).Google Scholar
5. Lee, Z. W. et al. Ibid. 273, 1271012715 (1998).Google Scholar
6. Vogel, K., Wang, S., Lee, R. J., Chmielewski, J., Low, P. S., J. Am. Chem. Soc. 118, 15811586 (1996).CrossRefGoogle Scholar
7. Hansen, M. B., Nielsen, S. E., Berg, K., J. Immunol. Methods 119, 201203 (1989).Google Scholar
8. Choy, J. H., Kwak, S. Y., Park, J. S., Jeong, Y. J., and Portier, J., J. Am. Chem. Soc., 121, (1999)13991400.CrossRefGoogle Scholar
9. Davis, S. S., Trends Biotechnol. 15, 217 (1997).CrossRefGoogle Scholar
10. Verma, I. M., Somia, N., Nature 389, 239 (1997).CrossRefGoogle Scholar
11. Bennet, C. F., Chiang, M. Y., Chan, H., Shoemaker, J. E. E., Mirabelli, C. K., Pharmacol. 41, 1023 (1992).Google Scholar
12. Wu, G. Y., Wu, C. H., J. Biol. Chem. 11, 1050 (1987).Google Scholar
13. Boussif, O., Lesoulac'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., emeneix, B., Behr, J. P., Proc. Natl. Acad. Sci. USA 92, 7297 (1995).CrossRefGoogle Scholar
14. Zanta, M. A., Boussif, O., Adib, A., Behr, J. P., Bioconjugate Chem. 8, 839 (1997).CrossRefGoogle Scholar
15. Choksakulnimitr, S., Masuda, S., Tokuda, H., Takakura, Y., Hashida, M., J. Controlled Release 34, 233 (1995).CrossRefGoogle Scholar
16. Brazeau, G. A., Attia, S., Poxon, S., Hughes, J. A., Pharm. Res. 15, 680 (1998).CrossRefGoogle Scholar
17. Putnam, D., Langer, R., Macromolecules 32, 3658 (1999).CrossRefGoogle Scholar
18. Judith, K. G. C., Bodepudi, V., Bishop, J. S., Jayaraman, K., Chaudhary, N., J. Biol. Chem. 270, 31391 (1995).Google Scholar