Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-12T07:10:42.013Z Has data issue: false hasContentIssue false

Inhomogeneous Electric Potential Distributions Induced by in Clusters Grown on P-WSE2 (0001) Surfaces

Published online by Cambridge University Press:  25 February 2011

R. Schlaf
Affiliation:
Hahn-Meitner-lnstitut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
H. Sehnert
Affiliation:
Hahn-Meitner-lnstitut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
C. Pettenkofer
Affiliation:
Hahn-Meitner-lnstitut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
W. Jaegermann
Affiliation:
Hahn-Meitner-lnstitut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
Get access

Abstract

In deposited on UHV cleaved p-WSe2 (0001) is investigated by photoelectron spectroscopy (XPS, UPS), low energy electron diffraction (LEED), scanning electron microscopy (SEM), and surface photovoltage (SPV) experiments. In forms an atomically abrupt, non-reactive metallic overlayer on the substrate. It grows in threedimensional clusters (Volmer-Weber growth mode). The experimentally observed band bending induced by In at RT is smaller than expected by the Schottky limit. Photoemission source induced SPV values at 100 K are saturated and different for the substrate and In overlayer emission lines. The results are explained by laterally inhomogeneous electric potential distributions due to the In clustering on the semiconductor surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Oxford SciencePublishers, Oxford, 1988)Google Scholar
2 Metal Semiconductor Schottky Barrier Junctions and Their Applications, ed. by Sharma, B. L. (Plenum, N.Y., 1984)Google Scholar
3 Brillson, L. J., Surf.Sci.Rep. 2,1 (1982)CrossRefGoogle Scholar
4 Mönch, W., Festkorperprobleme (Advances in Solid State Physics), ed. by Grosse, P. (Pergamon, Braunschweig, 1986), Vol. XXVl, 1. 67 Google Scholar
5 Spicer, W. E., Kendelewicz, T., Newman, N., Cao, R., McCants, C., Miyano, K., Lindau, I., Liliental-Weber, Z. and Weber, E. R., Appl.Surf.Sci 33/34, 10091029, (1988)Google Scholar
6 Bardeen, J., Phys.Rev. 71,717, (1947)Google Scholar
7 Schottky, W., Z.Phys 113,367, (1939)Google Scholar
8 Jaegermann, W. and Tributsch, H.: Interfacial Properties of Semiconducting Transition Metal DichalcogenidesGoogle Scholar
9 Takayanagi, K., Shinozawa, H., Yagi, K. and Honjo, G., Surf. Sci. 41, 581583, (1974)Google Scholar
10 Jaegermann, W., Pettenkofer, C. and Parkinson, B. A., Phys. Rev. B 42(12), 74877496, (1990)Google Scholar
1lKennou, S., Ladas, S. and Papageorgopoulos, C. A., Surf. Sci. 164, 290, (1985)Google Scholar
12 Ladas, S., Kennou, S., Karamatos, M., Foulias, S. D. and Papageorgopoulos, C. A., Surf. Sci. 189/190, 261 (1987)Google Scholar
13 Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y. and Lindau, I., J. Vac. Sci. Technol. 16(5), 1422, (1979)Google Scholar