Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T17:23:04.875Z Has data issue: false hasContentIssue false

Influence of Water Cement Ratio and Curing on the Permeability and Structure of Hardened Cement Paste and Concrete

Published online by Cambridge University Press:  22 February 2011

Herbert Gräf
Affiliation:
Research Center of the Cement Industry, Tannenstraβe 2, 4000 Dülsseldorf 30, W. Germany
Max J. Setzer
Affiliation:
University – GH – Essen, Inst. Physics of Construction and Materials Science, Universitätsstraβe 15, 4300 Essen 1, W. Germany
Get access

Abstract

Curing affects sincerely the durability of concrete especially in surface regions. This is reflected in the pore structure and in the permeability. In a systematic research the structural changes due to water cement ratio and curing have been studied by mercury porosimetry, by nitrogen adsorption, by oxygen diffusion and by oxygen permeability. Due to these results diffusion and permeability are connected by a power law. Structural changes alter the permeability by four orders of magnitude. The results can be well explained by pore size distribution both for hcp and for concrete. Carbonation and frost action as well as strength and elastic modulus are closely correlated to permeability and therefore to pore structure. For practical application it is possible to give advice for concreting and curing. Service life can be predicted by permeability measurements in an early stage. The results are comparable with Nyames /20/.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. D'Arcy, H.P.G.: “Les fontaines publiques de la ville de Dijon”, Paris 1856 Google Scholar
2. Manegold, E.: “Kapillarsysteme”, Kolloid Z. Vol.2.81, p. 164 (1937)Google Scholar
3. Zimens, K.E.: “Kennzeichnung, Herstellung und Eigenschaften poröser Körper”, in ‘Handbuch der Katalyse, Springer, (1943) p. 151268 Google Scholar
4. Zagar, L.: “Die Grundlagen zur Ermittlung der Gasdurchlässigkeit von feuerfesten Baustoffen”, Archiv f¨r das Eisenhüttenwesen, Vol.26(H12), 777 (1955)Google Scholar
5. Powers, T.C.; Copeland, L.E.; Hayes, J.C.; Mann, H.M.: “Permeability of Portland cement paste” J. Am. Con. Inst. Vol.26, 285 (1954), PCA Bull. No. 53 (1955)Google Scholar
6. Schwiete, H.E.; Ludwig, U.: “uber die Bestimmung der offenen PorositAt im Zementstein”, Tonindustriezeitung Vol.90, (H.12), 562574 (1966)Google Scholar
7. Grube, H.; Lawrence, C.D.: “Permeability of concrete to oxygen”, RILEM Sem. ‘Durability of concrete structures under normal outdoor exposure, Hannover 1984 Google Scholar
8. Schwiete, H.E.; Böhme, H.J.; Ludwig, U.: “Measuring gas diffusion for the evaluation of open porosity on mortars and concrete” Mater. Stucture Vol.2, 4348 (1969)Google Scholar
9. Lawrence, C.D.: “Transport of oxygen through concrete” in ‘Chemistry and chemically-related properties of cement’, Brit. Cer. Soc. London, 1984 Google Scholar
10. Setzer, M.J.: “A model of pore water - hcp interaction”, Proc. Eng. Found. conf. ‘Cement production and use', Potosi, USA, 1988 Google Scholar
11. Setzer, M.J.: “Abnormal freezing of water in concrete - influence of pore structure and deicing chemicals”, Workshop ‘Low temperature effects on concrete’, Sapporo, Japan, 1988 Google Scholar
12. Gräf, H.: “über die Porositat und die Durchlässigkeit von Zementstein, Mörtel und Beton und ihr Einfluβ auf die Gebrauchseigenschaften von Beton” (Porosity and permeability of hardened cement paste, mortar and concrete and its influence on the properties of concrete in application), PhD thesis Univ. Essen 1988 Google Scholar
13. van Brakel, J.: “Pore space models for transport phenomena in porous media - Evaluation with special emphasis on capillary liquid transport”, Powder Technology Vol.11, 205236 (1975)Google Scholar
14. Gräf, H.; Grube, H.: “Verfahren zur Prüfung der Durchlässigkeit von Mörtel und Beton gegenüber Gasen und Wasser”, Beton Vol.36, 184187 (1986)Google Scholar
15. Lawrence, C.D.: “The determination of the permeability of concrete to oxygen by the CEMBUREAU method - a recommendation” London 1988 Google Scholar
16. Grube, H.; Krell, J.: “Zur Bestimmung der Carbonatisierungstiefe von Mörtel und Beton”, Beton Vol.36(3), 104 1986)Google Scholar
17. Martin, H.; Rauen, H.; Schieβil, P.: “Karbonatisierung von Beton aus verschiedenen Zementen”, Betonwerk & Fertigteiltechnik, (12), 588–590 (1975)Google Scholar
18. Schieβl, P.: “Zur Frage der zulässigen Riβbreite und der erforderlichen Betondeckung im Stahlbetonbau unter besonderer Berücksichtigung der Karbonatisierung des Betons” Schriftenreihe Deutscher Ausschuβ f. Stahlbeton, Heft 255, (1976)Google Scholar
19. Zech, B.; Setzer, M.J.: “The dynamic elastic modulus of hardened cement paste - Part 1: A new statistical model - water and ice filled pores”, Materials & Structures Vol.21,(1988)Google Scholar
20. Nyame, B.K.: “Permeability and pore structure of hardened cement paste and mortar.”, PhD thesis, Univ. London, Kings College, 1979 Google Scholar