Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-g7stk Total loading time: 0.319 Render date: 2021-04-12T23:35:46.626Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of Processing Parameters on Microstructure of Pulsed Laser Deposited Au Thin Films

Published online by Cambridge University Press:  26 February 2011

Andreas Kulovits
Affiliation:
akk8@pitt.edu University of Pittsburgh Dept. of Mechanical Engineering and Materials Science 848 Benedum Hall Pittsburgh PA 15261 United States
John Leonard
Affiliation:
jleonard@pitt.edu, University of Pittsburgh, Dept. of Mechanical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Jorg Wiezorek
Affiliation:
wiezorek@pitt.edu, University of Pittsburgh, Dept. of Mechanical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Corresponding
Get access

Abstract

It has long been recognized that thin film polycrystalline microstructures are determined by the thermodynamics and kinetics associated with physical vapor deposition, but it is quite process dependent and not easily quantified. We have examined the microstructure in polycrystalline Au films obtained by pulse laser deposition (PLD) under various conditions and interpret the results in terms of three fundamental parameters common to all physical vapor deposition: Flux kinetic energy, substrate temperature, and deposition rate. With this model, it is predicted that nanocrystalline films are formed in the limits of low temperature, flux, and high deposition rate. The deposited films are analyzed with X-ray diffraction and SEM to determine texture and grain morphology, which are found to fit well within the process maps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Levlin, M., Laakso, A., Niemi, H.E.M. and Hautojarvi, P., Appl. Surf. Sci. 115, 31 (1997).CrossRefGoogle Scholar
2. Tai, K.L., Turner, P.A. and Bacon, D.D., J. Vac. Sci. Technol. 6, 687 (1969).CrossRefGoogle Scholar
3. Mancini, N. and Rimini, E., Surf. Sci. 22, 357 (1970).CrossRefGoogle Scholar
4. Kakati, K.K. and Wilman, H., J. Phys. D 6, 1307 (1973).CrossRefGoogle Scholar
5. Adamov, M., Perovic, B. and Nenadovic, T., Thin Solid Films 24, 89 (1974).CrossRefGoogle Scholar
6. White, J.R., Thin Solid Films 22, 23 (1974).CrossRefGoogle Scholar
7. Hummel, R.E., DeHoff, R.T., Matts-Goho, S. and Goho, W.M., Thin Solid Films 78, 1 (1981).CrossRefGoogle Scholar
8. Zei, M.S., Nakai, Y., Lehmpeuhl, G. and Kolb, D.M., J. Electroanal. Chem 150, 201 (1983).CrossRefGoogle Scholar
9. Krim, J., Thin Solid Films 137, 297 (1986).CrossRefGoogle Scholar
10. Wong, C.C., Smith, H.I. and Thompson, C.V., Appl. Phys. Lett. 48, 335 (1986).CrossRefGoogle Scholar
11. Jach, T., Hembree, G. and Holdeman, L.B., Thin Solid Films 187, 133 (1990).CrossRefGoogle Scholar
12. Golan, Y., Margulis, L. and Rubinstein, I., Surf. Sci. 264, 312 (1992).CrossRefGoogle Scholar
13. Hwang, J. and Dubson, M.A., J. Appl. Phys. 72, 1852 (1992).CrossRefGoogle Scholar
14. Aguilar, M., Oliva, A.I., Quintana, P. and Pena, J.L., Surf. Sci. 380, 91 (1997).CrossRefGoogle Scholar
15. Stamou, D., Gourdon, D., Liley, M., Burnham, N.A., Kulik, A., Vogel, H. and Duschl, C., Langmuir 13, 2425 (1997).CrossRefGoogle Scholar
16. Everitt, D.L., Miller, W.J.W., Abbott, N.L. and Zhu, X.D., Phys. Rev. B 62, R4833 (2000).CrossRefGoogle Scholar
17. Semaltianos, N.G. and Wilson, E.G., Thin Solid Films 366, 111 (2000).CrossRefGoogle Scholar
18. Emery, R.D. and Povirk, G.L., Acta Mater. 51, 2079 (2003).CrossRefGoogle Scholar
19. Rost, M.J., Quist, D.A. and Frenken, J.W.M., Phys. Rev. Lett. 91, 026101 (2003).CrossRefGoogle Scholar
20. Mattox, D.M., J. Appl. Phys. 37, 3613 (1966).CrossRefGoogle Scholar
21. Schell, N., Jensen, T., Petersen, J.H., Andreasen, K.P., Bottiger, J. and Chevallier, J., Thin Solid Films 441, 96 (2003).CrossRefGoogle Scholar
22. Kwon, J.Y., Yoon, T.S., Kim, K.B. and Min, S.H., J. Appl. Phys. 93, 3270 (2003).CrossRefGoogle Scholar
23. Adamov, M., Perovic, B. and Nenadovic, T., Thin Solid Films 24, 89 (1974).CrossRefGoogle Scholar
24. Scheibe, H.J., Gorbunov, A.A., Baranova, G.K., Klassen, N.V., Konov, V.I., Kulakov, M.P., Pompe, W., Prokhorov, A.M. and Weiss, H.J., Thin Solid Films 189, 283 (1990).CrossRefGoogle Scholar
25. Irissou, E., Drogoff, B. Le, Chaker, M. and Guay, D., J. Appl. Phys. 94, 4796 (2003).CrossRefGoogle Scholar
26. Irissou, E., Drogoff, B. Le, Chaker, M. and Guay, D., Appl. Phys. Lett. 80, 1716 (2002).CrossRefGoogle Scholar
27. Irissou, E., Drogoff, B. Le, Chaker, M., Trudeau, M. and Guay, D., J. Mater. Res. 19, 950 (2004).CrossRefGoogle Scholar
28. Barna, P.B. and Adamik, M., Thin Solid Films 317, 27 (1998).CrossRefGoogle Scholar
29. Thompson, C.V., Ann. Rev. Mater. Sci. 30, 159 (2000).CrossRefGoogle Scholar
30. Rossnagel, S., in Handbook of Thin-Film Deposition Processes and Techniques (K. Seshan ed.) Ch. 8, 319 (2002)CrossRefGoogle Scholar
31. Franghiadakis, Y., Fotakis, C. and Tzanetakis, P., Appl. Phys. A 68, 391 (1999).CrossRefGoogle Scholar
32. Chrisey, D.B., Hubler, G.K., Pulsed laser deposition of thin films, Wiley (1994).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Processing Parameters on Microstructure of Pulsed Laser Deposited Au Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Processing Parameters on Microstructure of Pulsed Laser Deposited Au Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Processing Parameters on Microstructure of Pulsed Laser Deposited Au Thin Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *