Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T16:42:51.074Z Has data issue: false hasContentIssue false

In Situ Monitoring of the Smear-Out of the Ge Profile in GAS Source SiGe MBE Using Rheed Intensity Oscillations

Published online by Cambridge University Press:  25 February 2011

K. Werner
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
S. Butzke
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
J.W. Maes
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
O.F.Z. Schannen
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
J. Trommel
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
S. Radelaar
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
P. Balk
Affiliation:
Delft Institute of Microelectronics and Submicron Technology (DIMES)Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Get access

Abstract

We have studied the deposition of GexSi1−x layers on (100) Si substrates by gas source molecular beam epitaxy (GSMBE) using disilane and germane.

The investigation of RHEED intensity oscillations during growth reveals the well known rate enhancement obtained when adding a small amount of germane to the disilane flux. However, when exposing a previously deposited Ge layer to a pure disilane flux the growth rate during the first few monolayers remains at an enhanced value but returns to its homoepitaxial value after about 10 to 15 monolayers. This behaviour was observed under a variety of growth conditions. It is in marked contrast to the experience obtained in conventional Si/Ge MBE and suggests a catalytic effect of the particular surface present during GSMBE growth. We propose that this effect is caused by the surface segregation of Ge species and leads to a smear-out of the Ge profile in the layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jain, S.C. and Hayes, W., Semicond. Sci. Technol. 6, 547 (1991).Google Scholar
2. Patton, G.L., Comfort, J.H., Meyerson, B.S., Crabbe, E.F., Scilla, G.J., Fresart, E. de, Stork, J.M.C., Sun, J.Y.C., Harame, D.L. and Burghartz, J.N., IEEE Trans. Electron. Device Lett. 7, 171 (1990)Google Scholar
3. Pearsall, T.P., Temkin, H., Bean, J.C. and Luryi, S., IEEE Trans. Electron. Device Lett. 7, 330 (1986)Google Scholar
4. Kasper, E., Surf. Science, 174, 630 (1986)Google Scholar
5. Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K., J. Vac. Sci. Technol. A, 2, 436 (1984)Google Scholar
6. Gibbons, J.F., Gronet, C.M. and Williams, K.E., Appl. Phys. Lett. 47, 721 (1985)Google Scholar
7. Meyerson, B., IBM J. Res. Develop. 4, 806 (1990)Google Scholar
8. Hirayama, H., Tatsumi, T. and Aizaki, N., Appl. Phys. Lett. 52 1484 (1988)Google Scholar
9. Yamada, A., Tanda, M., Kato, F., Konagai, M. and K. Takahashi, 69 1008 (1991)Google Scholar
10. Koide, Y., Furukawa, A., Zaim, S. and Yasuda, Y., J. Cryst. Growth 115 365 (1991)Google Scholar
11. Meyerson, B. S., Uram, K.J. and LeGoues, F.K., Appl. Phys. Lett. 3 2555 (1988)Google Scholar
12. Hirayama, H., Hiroi, M., Koyama, K. and Tatsumi, T., Appl. Phys. Lett. 56, 1107 (1990)Google Scholar
13. Eberl, K., Krötz, G., Zachai, R. and Abstreiter, G., J. Phys. Colloq. C 5, 320 (1987)Google Scholar
14. Zalm, P.C., Walle, G.F.A. van de, Gravesteijn, D.J. and Gorkum, A.A. van, Appl. Phys. Lett. 55, 2520 (1989)Google Scholar
15. Fukatsu, S., Fujita, K., Yaguchi, H., Shiraki, Y. and Ito, R., Appl. Phys. Lett. 59 2103 (1991)Google Scholar
16. Kasper, E. and Kibbel, H., Vak. Techn. 3, 13 (1984)Google Scholar
17. Rancelli, M. and Greve, D.W., Appl. Phys. Lett. 56, 2524 (1990)Google Scholar
18. Murota, J., Kato, M., Kircher, R. and Ono, S., J. de Physique IV Coll. C21, 795 (1991)Google Scholar