Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T15:04:22.378Z Has data issue: false hasContentIssue false

Improved Optical Quality of BAlGaN/AlN MQW Structure Grown on 6H-SiC Substrate by Controlling Residual Strain Using Multi-Buffer Layer

Published online by Cambridge University Press:  17 March 2011

Takayoshi Takano
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Hideo Kawanishi
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Makoto Kurimoto
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Yoshiyuki Ishihara
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Masato Horie
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Jun Yamamoto
Affiliation:
Department of Electronic Engineering, Kohgakuin University, 2665-1 Nakano-machi, Hachiohji-shi, Tokyo 192-0015, Japan
Get access

Abstract

BAlGaN and (BAlGaN/AlN) multi-quantum-wells (MQWs) structure were grown on 6H-SiC substrate by a low-pressure metalorganic vapor phase epitaxy (LP-MOVPE). Estimated boron compositions of the BAlGaN quantum wells by an Auger electron spectroscopy (AES) analysis were 0% to 13%. Photoluminescence (PL) spectra around 260 nm were observed at room temperature. The full-width at half maximum (FWHM) of PL spectra for BAlGaN/AlN MQW structure(with 2% of boron) was narrowed from 360 meV to 179 meV, as the residual strain in the BAlGaN well layer was decreased from 1.3% to 1.0% by increasing the Al content in the quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haruyama, M., Shirai, T., Kawanishi, H. and Suematsu, Y., Proceedings of the International Symposium on Blue Laser and Light Emitting Diodes, pp. 106109 (1996).Google Scholar
2. Tsubamoto, M., Honda, T., Yamamoto, J., Kurimoto, M., Shibata, M., Haruyama, M. and Kawanishi, H., Proceedings of the Second International Conference on Nitride Semiconductors, pp.250251 (1997).Google Scholar
3. Vezin, V., Yatagai, S., Shiraki, H. and Uda, S.: Jpn. J.Appl, Phys. 36, L1437 (1997).Google Scholar
4. Polyakov, A. Y., Shin, M., Skowronski, M., Greve, D. W., Wilson, R. G., Govorkov, A.V. and Desrosers, R. M., Journal of Electronic Materials 26, 237 (1997).Google Scholar
5. Wei, C. H., Xie, Z. Y., Edgar, J. H., Zeng, K. C., Lin, J. Y., Jiang, H. X., Ignatiev, C., Chaudhuri, J. and Braski, D. N., MRS Internet J. Nitride Semicond Res. 4S1, G3.79 (1999).Google Scholar
6. Takano, T., Kurimoto, M., Yamamoto, J., Shibata, M., Ishihara, Y., Tsubamoto, M., Honda, T. and Kawanishi, H., Proceedings of the Third International Symposium on Blue Laser and Light Emitting Diodes, pp.231234 (2000).Google Scholar
7. Honda, T., Shibata, M., Kurimoto, M., Tsubamoto, M., Yamamoto, J. and Kawanishi, H., Jpn. J. Appl. Phys. 39, 2389 (2000).Google Scholar
8. Shin, M., Polyakov, A. Y., Qian, W., Skowronski, M., Greve, D. W. and Wilson, R. G., Mat. Res. Soc. Symp. Proc. 449, 141 (1997).Google Scholar
9. Ishihara, Y., Yamamoto, J., Kurimoto, M., Takano, T. and Kawanishi, H., Jpn. J. Appl. Phys. 38, L1296 (1999).Google Scholar