Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T12:29:53.001Z Has data issue: false hasContentIssue false

Improved Kematical X-Ray Rocking Cjrve Analyses

Published online by Cambridge University Press:  22 February 2011

H. M. Kim
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Amherst, NY 14260
C. R. Wie
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Amherst, NY 14260
Get access

Abstract

A new boundary condition is used in the kinematical x-ray diffraction model analysis of rocking curves. The boundary condition is the dynamical reflection amplitude instead of the previously used dynamical intensity for the substrate. It is shown that this boundary condition properly accounts for the angular shift effect in the Bragg peak profile of very thin epitaxial layers and in the 0th-order superlattice peak. We present experimental and simulated rocking curves for various samples. The simulation was performed by using the dynamical diffraction theory, the kinematical model with the new amplitude boundary condition, and the kinematical model with the old intensity boundary condition. We also analyzed the strained resonant tunneling device structure and single strained quantum well samples by x-ray interference technique. Our x-ray interference results showed a good agreement with the nominal values for both experimental and simulated rocking curves.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wie, C.R., Chen, J.C., Kim, H.M., Liu, P.L., Choi, Y.-W., and Hwang, D.M., Appl.Phys. Lett. 55, 1774 (1989); C.R. Wie, Bull.Am.P hys.Soc. 34, 1539 (1989)CrossRefGoogle Scholar
2. Tapfer, L., Ospelt, M., and von Kanel, H., J.Appl.Pnys. 67, 1298 (1990)CrossRefGoogle Scholar
3. Speriosu, V.S. and Vreeland, T. Jr, J.Appl.Phys. 56, 1591 (1984)CrossRefGoogle Scholar
4. Speriosu, V.S., Appl.Phys.Lett. 45, 223 (1984)CrossRefGoogle Scholar
5. Quillec, M., Goldstein, L., Roux, G. Le, Burgeat, J., and Primot, J., J.Appl. Phys. 55, 2904 (1984)Google Scholar
6. Vandenberg, J.M., Chu, S.N.G., Hamm, R.A., Panish, M.B., and Temkin, H., Appl. Phys.Lett. 49, 1302 (1986)Google Scholar
7. Macrander, A-T., Schwartz, G.P., and Gualtieri, G.J., J.Appl.Phys. 64, 6733 (1988)Google Scholar
8. Tapfer, L., Stolz, W., and Ploog, X., J.Appl.Phys. 66, 3217 (1989)CrossRefGoogle Scholar
9. Barnett, S.J., Brown, G.T., Houghton, D.C., and Baribeau, J.-M., Appl.Phys. lett. 54, 1781 (1989)CrossRefGoogle Scholar
10. Venkateswaran, U.D., Burnett, T., Cui, L.J., Li, M., Weinstein, B.A., Kim, H.M., Wie, C.R., Elcess, K., Fonstad, C.G., and Mailhiot, C.,Phys.Rev.B 42, 3100 (1990)Google Scholar
11. Fewster, P.F. and Curling, C.J., J.Appl.Phys. 62, 4154 (1987)CrossRefGoogle Scholar
12. Tapfer, L., Physica Scripta. T 25, 45 (1989)CrossRefGoogle Scholar
13. Wie, C.R., J.Appl.Phys. 66, 985 (1989)Google Scholar
14. Shufan, C. and Zhenhong, M., J.Appl.Cryst. 23, 147 (1990)Google Scholar
15. Wie, C.R., J.Appl.Phys. 65, 1036 (1989)CrossRefGoogle Scholar
16. Speriosu, V.S., J.Appl.Phys. 52, 6094 (1981)CrossRefGoogle Scholar
17. Wie, C.R. and Kim, H.M., J.Appl.Phys. (1990), submittedGoogle Scholar
18. Takagi, S., Acta Cryst. 15, 1311 (1962); D. Taupin, Bull.Soc.Franc.Miner. Cryst. 87, 469 (1964)CrossRefGoogle Scholar
19. Wie, C.R., Tombrello, T.A., and Vreeland, T. Jr, J.Appl.Phys. 59, 3743 (1986)Google Scholar
20. Zachariasen, W.H., ”Theory of X-Ray Diffraction in Crystals”, (Wiley, New York, 1945)Google Scholar
21. See, for example, Jiang, B-L., Shinura, F., Rozgonyi, G.A., Hanaguchi, N., and Bedair, S.M., Appl.Phys.Lett. 52, 1258 (1988)Google Scholar
22. Choi, Y.-W. and Wie, C.R., to be submittedGoogle Scholar