Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T20:17:37.058Z Has data issue: false hasContentIssue false

The Impact of Hydrogen Plasma Treatments at Moderate Temperatures on Sintered Zinc Oxide Samples - Evidence for Hydrogen Induced Nano-Void Formation

Published online by Cambridge University Press:  01 February 2011

Reinhart Job*
Affiliation:
reinhart.job@fernuni-hagen.de, University of Hagen, Mathematics and Computer Science, Haldener Str. 182, Hagen, D-58084, Germany, +49 2331 987 379, +49 2331 987 321
Get access

Abstract

Using μ-Raman spectroscopy (μRS) analyses, the impact of hydrogen plasma treatments on sintered zinc oxide (ZnO) samples was investigated. H-plasma exposures (150 W, 13.56 MHz) were carried out for 1 hour at substrate temperatures between 250 °C and 500 °C. μRS reveals that plasma hydrogenated ZnO samples are more defective than non-treated ones. On one hand non-specified defect species are created with a maximal density upon plasma hydrogenation at 350 °C, on the other hand the formation of oxygen vacancies (VO) can be traced. The density of VO defects, appearing upon H-plasma exposure, is not significantly correlated to the applied substrate temperatures. μRS also reveals vibration modes of H2 molecules trapped in nano-voids. The μRS results indicate that those nano-voids are created by the coalescence of VO defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. McCluskey, M. D., Jokela, S. J., Oo, W. M. Hlaing, Mater. Res. Soc. Symp. Proc. 864, 493 (2005).Google Scholar
3. Clarke, D. R., J. Am. Ceram. Soc. 82, 485 (1999).Google Scholar
4. Damen, T. C., Porto, S. P. S., Tell, B., Phys. Rev. 142, 570 (1966).Google Scholar
5. Calleja, J. M., Cardona, M., Phys. Rev. B 16, 3753 (1977).Google Scholar
6. Chen, Z. Q., Kawasuso, A., Xu, Y., Naramoto, H., Yuan, X. L., Sekiguchi, T., Suzuki, R., Ohdaira, T., Phys. Rev. B 71, 115213 (2005).Google Scholar
7. Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M.. Grundmann, M.. Wagner, G., Neumann, H., Darakchieva, V., Arwin, H., Monemar, B., J. Appl. Phys. 93, 126 (2003).Google Scholar
8. Callender, R. H., Sussman, S. S., Selders, M., Chang, R. K., Phys. Rev. B 7, 3788 (1973).Google Scholar
9. Jeong, S.-H., Kim, J.-K., Lee, B.-T., J. Phys. D: Appl. Phys. 36, 2017 (2003).Google Scholar
10. Youn, C. J., Jeong, T. S., Han, M. S., Kim, J. H., J. Cryst. Growth 261, 526 (2004).Google Scholar
11. Gorelkinskii, Yu. V., Watkins, G. D., Phys. Rev. B 69, 115212 (2004).Google Scholar
12. Leitch, A. W. R., Alex, V., Weber, J., Solid State Commun. 105, 215 (1998).Google Scholar
13. Leitch, A. W. R., Alex, V., Weber, J., Phys. Rev. Lett. 81, 421 (1998).Google Scholar
14. Job, R., Ulyashin, A. G., Fahrner, W. R., Beaufort, M. F., Barbot, J. F., The European Physical Journal - Applied Physics 23, 25 (2003).Google Scholar
15. Stoicheff, B. P., Can. J. Phys. 35, 730 (1957).Google Scholar