Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T04:50:33.337Z Has data issue: false hasContentIssue false

Hybrid Gels Designed for Mullite Nucleation and Crystallization Control

Published online by Cambridge University Press:  28 February 2011

Jeffrey C. Huling
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802
Gary L. Messing
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The controlled nucleation of phase transformations by seeding is an established technique for influencing transformation kinetics and sintered microstructures in ceramics. Previous studies have focused on seeding with ultrafine, solid particles having the requisite crystal characteristics for either homo- or heteroepitactic nucleation of the desired phase. Size separation of particulate seed crystals is not an efficient process and thus more recent efforts have concentrated on chemical approaches to nucleating solid phase transformations. Hybrid gels, in which two or more gels are combined to capitalize on the benefits of each, have been reported for the homoepitactic nucleation of mullite. In principle, the molecularly-mixed gel crystallizes to mullite at ∼1000°C and, in turn, acts to nucleate the colloidal gel component's transformation to mullite at higher temperatures. However, the transformation sequence and kinetics are profoundly affected by the interfacial reaction between the two gels comprising the hybrid. This paper discusses how the physical distribution and chemistry of the gel components can be manipulated for the control of mullite nucleation, crystallization and microstructure development.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sacks, M.D., Lee, H.W., and Pask, J.A., in Mullite and Mullite Matrix Composites (Ceramic Transactions, Vol. 6), edited by Somiya, S., Davis, R.F., and Pask, J.A. (American Ceramic Society, Westerville, OH, 1990), p. 167.Google Scholar
2. Ghate, B.B., Hasselman, D.P.H., and Spriggs, R.M., Bull. Am. Ceram. Soc. 52 (9), 670 (1973).Google Scholar
3. Hoffman, D.W., Roy, R. and Komarneni, S., J. Am. Ceram. Soc. 67 (7), 468 (1984).Google Scholar
4. Ismail, M.G.M.U., Nakai, Z., Minegishi, K. and Somiya, S., Int. J. High Technol. Ceram. 2 123 (1986).Google Scholar
5. Shinohara, N., Dabbs, D.M. and Aksay, I.A., in Infrared and Optical Transmitting Materials (SPIE Vol. 683), edited by Schwartz, R.W. (International Society for Optical Engineering, Bellingham, WA, 1986), p. 19.Google Scholar
6. Wei, W.C. and Halloran, J.W., J. Am. Ceram. Soc. 71 (3), 166 (1988).Google Scholar
7. Sonuparlak, B., Adv. Ceram. Mater. 3 (3), 263 (1988).Google Scholar
8. Mazdiyasni, K.S. and Brown, L.M., J. Am. Ceram. Soc. 55 (11), 548 (1972).Google Scholar
9. Hirata, Y., Sakeda, K., Matsushita, Y. and Shimada, K., Yogyo-Kyokai-Shi 93 (9), 101 (1985).Google Scholar
10. Paulick, L.A., Yu, Y.F. and Mah, T.I., in Ceramic Powder Science (Advances in Ceramics, Vol. 21), edited by Messing, G.L., Mazdiyasni, K.S., McCauley, J.W. and Haber, R.A. (American Ceramic Society, Westerville, OH, 1987), p. 121.Google Scholar
11. Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69 (9), 652 (1986)Google Scholar
12. Yoldas, B.E. and Partlow, D.P., J. Mater. Sci. 23, 1895 (1988).Google Scholar
13. Chakravorty, A.K. and Ghosh, D.K., J. Am. Ceram. Soc. 71 (11), 978 (1988).Google Scholar
14. Kumagai, M. and Messing, G.L., J. Am. Ceram. Soc. 68 (9), 500 (1985).Google Scholar
15. McArdle, J.L. and Messing, G.L., Adv. Ceram. Mater. 3 (4), 387 (1988).Google Scholar
16. Suwa, Y., Komarneni, S. and Roy, R., J. Mater. Sci. Lett. 5 21 (1986).Google Scholar
17. Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Res. 2 (4), 489 (1987).Google Scholar
18. Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Sci. 22 (10), 3556 (1987).Google Scholar
19. McArdle, J.L., Messing, G.L., Tietz, L.A. and Carter, C.B., J. Am. Ceram. Soc. 72 (5), 864 (1989).Google Scholar
20. Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 22 (9), 1725 (1989).Google Scholar
21. Iler, R.K, J. Am. Ceram. Soc. 47 (4), 194 (1964).Google Scholar
22. Huling, J.C. and Messing, G.L., J. Am. Ceram. Soc. 71 (4), C-222 (1988).Google Scholar
23. Brindley, G.W. and Nakahira, M., J. Am. Ceram. Soc. 42, (7), 319 (1959).Google Scholar
24. Huling, J.C. and Messing, G.L. (unpublished work).Google Scholar
25. Comer, J.J., J. Am. Ceram. Soc. 44 (11), 561 (1961).Google Scholar
26. Low, I.M. and McPherson, R., J. Mater. Sci. Lett. 7, 1196 (1988).Google Scholar
27. Mroz, T. J. Jr. and Laughner, J. W., J. Am. Ceram. Soc. 22 (3), 508 (1989).Google Scholar
28. Von Lohre, W. and Urban, H., Ber. Dtsch. Keram. Ges. 31 (6), 249 (1960).Google Scholar
29. Klug, F.J., Prochazka, S, and Doremus, R.H., J. Am. Ceram. Soc. 70 (10), 750 (1987).Google Scholar