Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-zqbsd Total loading time: 0.225 Render date: 2021-03-08T17:32:47.466Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissionning of the Hinkley Point ‘A’ Site

Published online by Cambridge University Press:  01 February 2011

Paul A Bingham
Affiliation:
p.a.bingham@sheffield.ac.uk, University of Sheffield, Department of Engineering Materials, Sheffield, United Kingdom
Neil C Hyatt
Affiliation:
n.c.hyatt@sheffield.ac.uk, University of Sheffield, Department of Engineering Materials, Sheffield, United Kingdom
Russell J Hand
Affiliation:
r.hand@sheffield.ac.uk, University of Sheffield, Depa, Sheffield, United Kingdom
Christopher R Wilding
Affiliation:
Christopher.Wilding@sercoassurance.com, Magnox South Ltd., Hinkley Point 'A 'Site, Bridgwater, Somerset, United Kingdom
Get access

Abstract

The Immobilisation Science Laboratory, University of Sheffield, is working with Magnox South Ltd to develop a range of glass formulations that are suitable for vitrification of the Wet Intermediate Level Waste (WILW) envelope arising from decommissioning of the Hinkley Point ‘A’ (HPA) power station. Four waste mixtures or permutations are under consideration for volume reduction and immobilisation by vitrification. The inorganic fractions of several of the wastes are suitable for vitrification as they largely consist of SiO2, MgO, Fe2O3, Na2O, Al2O3 and CaO. However, difficulties may arise from the high organic and sulphurous contents of certain waste streams, particularly spent ion exchange (IEX) resins. IEX resin wastes may be the key factor in limiting waste loading, and possible thermal pretreatments of IEX resin to decrease C and S contents prior to vitrification have been investigated. Our results suggest that lowtemperature (90 °C) pretreatment is more favourable than hightemperature (250, 450, 1000 °C) pretreatment. A thorough desktop study has provided initial candidate glass compositions which have been downselected on the basis of glass forming ability, melting temperature, viscosity, liquidus temperature, chemical durability and potential sulphate capacity. Early results for two of the candidate glass formulations indicate that formation of an amorphous product with at least 35 wt % (dry waste) loading is achievable for HPA IEX resin wastes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Generic Waste Package Specification, Vol. 1: Specification, Nirex Report N/104, June 2005; http://www.nda.gov.uk/documents/upload/Generic-waste-package-specification-2005.pdf Google Scholar
2. Jantzen, C. M., Peeler, D. K. and Cicero, C. A., Report WSRC-MS-95–0518, 1995; http://www.osti.gov/bridge/servlets/purl/237361-VKs8Cg/webviewable/ Google Scholar
3. Sargent, T. N., Overcamp, T. J., Bickford, D. F. and Cicero-Herman, C. A., Nucl. Technol. 123 (1998) 6066.CrossRefGoogle Scholar
4. Ojovan, M. I. and Lee, W. E., An introduction to nuclear waste immobilisation (2005) Elsevier, Amsterdam.Google Scholar
5. Bingham, P. A. and Hand, R. J., Mater. Res. Bull. 43 (2008) 16791693.CrossRefGoogle Scholar
6. Jantzen, C. M., Smith, M. E. and Peeler, D. K., Ceram. Trans. 168 (2005) 141152.Google Scholar
7. Manara, D., Grandjean, A., Pint, O., Dussossoy, J. L. and Neuville, D. R., J. Non-Cryst. Solids 353 (2007) 1223.CrossRefGoogle Scholar
8. Schreiber, H. D., Kozak, S. J., Leonhard, P. G. and McManus, K. K., Glastech. Ber. 60 (1987) 389398.Google Scholar
9. Bickford, D. M., Diemer, R. B. and Iverson, D. C., J. Non-Cryst. Solids 84 (1986) 285291.CrossRefGoogle Scholar
10. Antonetti, P., Claire, Y., Massit, H., Lessart, P., Pham Van Cang, C. and Perichaud, A., J. Anal. Appl. Pyrol. 55 (2000) 8192.CrossRefGoogle Scholar
11. Chun, U. K., Choi, K., Yang, K. H., Park, J. K. and Song, M. J., Waste Man. 18 (1998) 183196.CrossRefGoogle Scholar
12. Dubois, M. A., Dozol, J. F., Nicotra, C., Scrose, J. and Massiani, C., J. Anal. Appl. Pyrol. 31 (1995) 129140.CrossRefGoogle Scholar
13. Juang, R. S. and Lee, T. S., J. Hazard. Mater. B92 (2002) 301314.CrossRefGoogle Scholar
14. Nassoy, P., Scanlan, F. P. and Muller, J. F., J. Anal. Appl. Pyrol. 16 (1989) 255268.CrossRefGoogle Scholar
15. Scanlan, F. P., Muller, J. F. and Fiquet, J. M., J. Anal. Appl. Pyrol. 16 (1989) 269289.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissionning of the Hinkley Point ‘A’ Site
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissionning of the Hinkley Point ‘A’ Site
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Glass Development for Vitrification of Wet Intermediate Level Waste (WILW) from Decommissionning of the Hinkley Point ‘A’ Site
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *