Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T11:16:02.418Z Has data issue: false hasContentIssue false

A General Treatment of Antiphase Domain Formation and Identification at Polar-Nonpolar Semiconductor Interfaces.

Published online by Cambridge University Press:  22 February 2011

R.C. Pond
Affiliation:
Department of Metallurgy and Materials Science, The University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.
J.P. Gowers
Affiliation:
Philips Research Laboratories, Redhill, Surrey, RHl 5HA, U.K.
D.B. Holt
Affiliation:
Department of Metallurgy, Imperial College, London, SW7 2BP, U.K.
B.A. Joyce
Affiliation:
Philips Research Laboratories, Redhill, Surrey, RHl 5HA, U.K.
J.H. Neave
Affiliation:
Philips Research Laboratories, Redhill, Surrey, RHl 5HA, U.K.
P.K. Larsen
Affiliation:
Philips Research Laboratories, P.O. Box 80,000, 5600 J.A. Eindhoven, The Netherlands.
Get access

Abstract

Observations of antiphase disorder obtained using a new technique of transmission electron microscopy, in (100) epitaxial layers of GaAs:Ge produced by MBE are presented. The crystallographic origin of this type of disorder is analysed using a recently developed approach. It is shown that antiphase disorder can exist in epitaxial layers where the substrate orientation is of the form {hko}this is consistent with experimental observations that disorder is observed on (100) and (110) substrates, but not on (111) or (211), for example. Antiphase boundaries in {hko} specimens are shown to separate interfacial domains which are energetically degenerate and related by symmetry operations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bobb, L.C., Holloway, H., Maxwell, K.H. and Zimmoman, Z., J. Appl. Phys. 37 (1966) 4687.CrossRefGoogle Scholar
2. Morizane, K., J. Crystal Growth, 38 (1977) 249.CrossRefGoogle Scholar
3. Kroemer, H., Polasko, K.J. and Wright, S.L., Appl. Phys. Lett. 36 (1980) 763.CrossRefGoogle Scholar
4. Wright, S.L., Inada, M. and Kormer, H., J. Vac. Sci. Technol. 21 (1982) 534.CrossRefGoogle Scholar
5. Neave, J.H., Laser, P.K., Joyce, B.A., Gowers, J.P. and van der Veen, J.F., J. Vac. Sci. Technol. B1 (1983) 668.CrossRefGoogle Scholar
6. Chang, C.A. and Kuan, T.S., J. Vac. Sci. Technol. B1 (1983) 315.CrossRefGoogle Scholar
7. Kuan, T.S. and Chang, C.A., J. Appl. Phys. 54 (1983) 4409.Google Scholar
8. Gowers, J.P., to be published.Google Scholar
9. Harrison, W.A., Krant, E.A., Waldrop, J.R. and Grant, R.W., Phys. Rev. B18, (1978) 4402.CrossRefGoogle Scholar
10. Taftø, J. and Spence, J.C., J. Appl. Cryst. 15, (1982) 60.CrossRefGoogle Scholar
11. Pond, R.C. and Bollmann, W., Phil. Trans. Roy. Soc. Lond. 292 (1979) 449.Google Scholar
12. Pond, R.C. and Vlachavas, D.S., Proc. Roy. Soc. Lond. A386 (1983) 95.Google Scholar
13. Pond, R.C., Phil. Mag. 47 (1983) L49.CrossRefGoogle Scholar
14. Cherns, D. and Pond, R.C., this volume.Google Scholar