Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-21T08:56:36.678Z Has data issue: false hasContentIssue false

GaN quantum dot UV light emitting diode

Published online by Cambridge University Press:  01 February 2011

Jeong-Sik Lee
Affiliation:
Research and Development Center, Nippon EMC, 2008–2 Wada Tama-shi Tokyo 205–0001, Japan
Satoru Tanaka
Affiliation:
Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 6 Kita-ku Sapporo 060–0812, Japan
Peter Ramvall
Affiliation:
Research and Development Center, Nippon EMC, 2008–2 Wada Tama-shi Tokyo 205–0001, Japan
Hiroaki Okagawa
Affiliation:
Photonics Laboratory, Mitsubishi Cable Industries, 4–3 Ikejiri Itami-shi Hyogo 664–0027, Japan
Get access

Abstract

The fabrication and evaluation of a UV light-emitting diode (LED) incorporating GaN quantum dots as the active layer is demonstrated. The GaN quantum dots were fabricated on an AlxGa1-xN (x∼0.1) surface using Si as an antisurfactant. Exposing the AlxGa1-xN surface to the Si antisurfactant prior to GaN growth enabled the formation of quantum dots on a surface where growth by the Stranski-Krastanov mode would not be possible. A fairly high density of dots (1010-1011 cm-2) with controllable dot sizes was achieved. Room temperature luminescence at 360 nm was clearly observed during current injection (cw) into an LED structure including the GaN quantum dots. The origin of the electroluminescence is discussed by comparing it to photoluminescence measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., Appl. Phys. Lett. 69 4188 (1996).Google Scholar
2. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz. and Fujita, Sg., Appl. Phys. Lett. 70 981 (1997).Google Scholar
3. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40 939 (1982).Google Scholar
4. Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett. 69 4096 (1996).Google Scholar
5. Tanaka, S., Takeuchi, M., and Aoyagi, Y., Jpn. J. Appl. Phys. 8B L831 (2000).Google Scholar
6. Tanaka, S., Suemune, I., Ramvall, P., and Aoyagi, Y., Phys. Stat. Sol. (b) 216 431 (1999).Google Scholar
7. Ramvall, P., Riblet, P., Nomura, S., Aoyagi, Y. and Tanaka, S., J. Appl. Phys. 87 3883 (1999).Google Scholar
8. Tanaka, S., Hirayama, H., Aoyagi, Y., Narukawa, Y., Kawakami, Y., Fujita, Sz., and Fujita, Sg., Appl. Phys. Lett. 71 1299 (1997).Google Scholar
9. Daudin, B., Widmann, F., Feuillet, G., Samson, Y., Arlery, M., and Rouvière, J. L., Phys. Rev. B 56 R7069 (1997).Google Scholar
10. Shan, W., Hauenstein, R. J., Fisher, A. J., Song, J. J., Perry, W. G., Bremser, M. D., Davis, R. F., and Goldenberg, B., Phys. Rev. B 54 13460 (1996).Google Scholar
11. Tanaka, S. (unpublished data)Google Scholar
12. Horino, K., Kuramata, A., and Tanahashi, T., (Mater. Res. Soc. Proc. 449, 1997) pp. 7378.Google Scholar
13. Ramvall, P., Tanaka, S., Nomura, S., Riblet, P., and Aoyagi, Y., Appl. Phys. Lett. 73 1104 (1998).Google Scholar
14. Nishida, T., Kobayashi, N., and Ban, T., Appl. Phys. Lett. 82 1 (2003).Google Scholar