Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-16T02:24:38.746Z Has data issue: false hasContentIssue false

Gadolinium and Oxygen co-doping of Gallium Nitride: an LSDA + U study

Published online by Cambridge University Press:  01 February 2011

Walter R. L. Lambrecht
Affiliation:
walter.lambrecht@case.edu, Case Western Reserve University, Physics, 10900 Euclid Avenue LC 7079, Cleveland, OH, 44106-7079, United States, (216) 368-6120, (216) 368-4671
Paul Larson
Affiliation:
paul.larson@case.edu, Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, LC 7079, Cleveland, OH, 44106-7079, United States
Get access

Abstract

Results of first-principles supercell calculations for Gd impurities, with and without O-impurities in the same cell are presented. The possibility of colossal magnetic moments, as reported by Dhar et al., [Phys. Rev. Lett. 94, 037205 (2005)] is discussed in view of the results. Particular attention is paid to the size of the conduction band spin splitting, induced by Gd. It is argued that O plays a more active role than merely providing the electrons leading to the magnetic moment. Estimates are made of the splitting of the conduction band required to explain the occurrence of colossal magnetic moments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teraguchi, N., Suzuki, A., Nanishi, Y., Zhou, Y-K., Hashimoto, M., and Asahi, H., Solid State Commun. 122, 651 (2002).Google Scholar
2. Asahi, H., Zhou, Y. K., Hashimoto, H., Kim, M. S., Li, X. J., Emura, S., and, Hasegawa, S., J. Phys. Condens. Matter 16, S5555 (2004).Google Scholar
3. Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. S., and Ploog, K. H., Phys. Rev. Lett. 94, 037205 (2005).Google Scholar
4. Pérez, L., Lau, G. S., Dhar, S., Brandt, O., and Ploog, K. H., Phys. Rev. B 74, 195207 (2006)Google Scholar
5. Dhar, S., Pérez, L., Brandt, O., Trampert, A., Ploog, K. H., Keller, J. and Beschoten, B., Phys. Rev. B 72, 245203 (2005)Google Scholar
6. Dhar, S., Kammermeier, T., Ney, A., Pérez, L., Ploog, K. H., Melnikov, A. and Wieck, A. D., Appl. Phys. Lett. 89, 062503 (2006).Google Scholar
7. Dalpian, G. and Wei, S-H., Phys. Rev. B 72, 115201 (2005).Google Scholar
8. Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J., Phys. Rev. B 52, R5467 (1995).11Google Scholar
9. Larson, P. and Lambrecht, W. R. L., Phys. Rev. B 74, 085108 (2006).Google Scholar
10. Larson, P. and Lambrecht, W. R. L., J. Phys. Condens. Matter 18, 11333 (2006).Google Scholar
11. Larson, P., Lambrecht, W. R. L., Chantis, A. and van Schilfgaarde, M., Phys. Rev. B 74, in pressGoogle Scholar
12. Methfessel, M., van Schilfgaarde, M., and Casali, R., in Electronic Structure and Physical Properties of Solids, The Uses of the LMTO Method, edited by Hughes, Dreyssé, Springer Lecture Notes, Workshop Mont Saint Odille, France, 1998, (Springer, Berlin 2000), p. 114.Google Scholar