Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-8sgpw Total loading time: 0.44 Render date: 2021-03-05T13:22:44.773Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fracture Toughness of Multiphase Intermetallics

Published online by Cambridge University Press:  22 February 2011

Kwai S. Chan
Affiliation:
Southwest Research Institute, San Antonio, TX 78238.
Get access

Abstract

An overview of recent advances in ductile-phase toughening of multiphase intermetallics is presented. The fracture characteristics of aluminides, silicides, chromides, and their composites are reviewed to elucidate relationships between microstructure, toughening mechanism, and fracture resistance. The roles of crack-tip blunting, trapping, bridging, and interface delamination in instigating fracture resistance are considered. Prospects for improving fracture toughness are discussed in conjunction with relevant microstructural variables such as the volume fraction, size, morphology, constraint, and work-of-fracture of the ductile phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kim, Y-W. and Dimiduk, D. M., JOM, 4047 (1991).Google Scholar
2. Kim, Y-W., JOM, 46 (7), 3039 (1994).CrossRefGoogle Scholar
3. Elliott, C. K., Odette, G. R., Lucas, G. E., and Sheckherd, J. W., (MRS Proceedings, 120, 1988) pp. 95101.CrossRefGoogle Scholar
4. Odette, G. R., Chao, B. L., Sheckherd, J. W., and Lucas, G. E., Acta Metall. Mater., 40, 23812389 (1992).CrossRefGoogle Scholar
5. Venkateswara Rao, K. T., Odette, G. R., and Ritchie, R. O., Acta Metall. Mater., 42, 8939111 (1992).CrossRefGoogle Scholar
6. Nardone, V. C., Met. Trans. A., 23A, 563572 (1992).CrossRefGoogle Scholar
7. Murugesh, L., Venkateswara Rao, K. T., and Ritchie, R. O., Scripta Metall. Mater., 29, 11071112 (1993).CrossRefGoogle Scholar
8. Venkateswara Rao, K. T., Soboyejo, W. O., and Ritchie, R. O., Met. Trans. A., 23A, 22492257 (1992).Google Scholar
9. Rigney, J. D., Castro, R. G., and Lewandowski, J. J., J. Mat. Sci., 28, 40234027 (1993).CrossRefGoogle Scholar
10. Shaw, L. and Abbaschian, R., Acta Metall. Mater., 42, 213223 (1994).CrossRefGoogle Scholar
11. Nekkanti, R. M. and Dimiduk, D. M. (MRS Symp. Proc., 194, 1990) pp. 175182.CrossRefGoogle Scholar
12. Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Met. Trans. A, 22A, 15731583 (1991).CrossRefGoogle Scholar
13. Mendiratta, M. G. and Dimiduk, D. M., Met. Trans. A, 24A, 501504 (1993).CrossRefGoogle Scholar
14. Rigney, J. D., Singh, P. M., and Lewandowski, J. J., JOM, 44 (8), 3641 (1992).CrossRefGoogle Scholar
15. Anton, D. L. and Shah, D. M. (MRS Symp Proc, 194, 1990) pp. 4552.CrossRefGoogle Scholar
16. Davidson, D. L. and Anton, D. L. (MRS Symp. Proc., 288, 1992) pp. 807813.CrossRefGoogle Scholar
17. Davidson, D. L., Chan, K. S., and Anton, D. L., AFOSR Annual Report 06–4915/3, 1994.Google Scholar
18. Strum, M. J. and Henshall, G. A. (MRS Symp. Proc., 288, 1993) pp. 10931098.CrossRefGoogle Scholar
19. Vehoff, H. (MRS Symp. Proc., 288, 1993) pp. 7182.CrossRefGoogle Scholar
20. Heredia, F. E., He, M. Y., Lucas, G. E., Evans, A. G., Deve, H. E., and Konitzer, D., Acta Metall. Mater., 41, 505511 (1993).CrossRefGoogle Scholar
21. Joslin, S. M., Chen, X. F., Oliver, B. F., and Noebe, R. D., Mat. Sci. & Eng., 1994 (in press).Google Scholar
22. Johnson, D. R., Chen, X. F., Oliver, B. F., Noebe, R. D., and Whittenberger, J. D., Intermetallics, 1995 (in press).Google Scholar
23. Rowe, R. G., Skelly, D. W., Larsen, M., Heathcote, J., Lucas, G., and Odette, G. R., (Mat. Res. Soc. Proc. 322, 1994) pp. 461473.CrossRefGoogle Scholar
24. Bowen, A. F. and Ortiz, M., J. Mech. Phys. Solids, 39, 815858 (1991).Google Scholar
25. He, M. Y., Heredia, F. E., Wissuchek, D. J., Shaw, M. C., and Evans, A. G., Acta Metall. Mater., 41, 12231228 (1993).CrossRefGoogle Scholar
26. Shaw, M. C., Marshall, D. B., Dadkhah, M. S., and Evans, A. G., Acta Metall. Mater., 41, 33113322 (1993).CrossRefGoogle Scholar
27. Chan, K. S., Met. Trans. A, 23A, 183199 (1992).CrossRefGoogle Scholar
28. Budiansky, B., Amazigo, J. C., and Evans, A. G., J. Mech. Phys. Solids, 36, 167187 (1988).CrossRefGoogle Scholar
29. Evans, A. G. and McMeeking, R. M., Acta Metall., 34, 24352441 (1986).CrossRefGoogle Scholar
30. Ashby, M. F., Blunt, F. J., and Bannister, M., Acta Metall., 37 18471857 (1989).CrossRefGoogle Scholar
31. Chan, K. S., Met. Trans. A, 22A, 20212029 (1991).CrossRefGoogle Scholar
32. Deve, H., Evans, A. G., and Shih, D. S., Acta Met., 40, 12591265 (1992).CrossRefGoogle Scholar
33. Chan, K. S. and Kim, Y-W., Met. Trans. A, 25A, 12171228 (1994).CrossRefGoogle Scholar
34. Chan, K. S. and Kim, Y-W., Acta Met. et. Mat., 1994 (in press).Google Scholar
35. Chan, K. S., He, M. Y., and Hutchinson, J. W., Mat. Sci. & Eng., A167, 5764 (1993).CrossRefGoogle Scholar
36. Chan, K. S. and Kim, Y-W., Met. Trans. A, 16631677 (1992).CrossRefGoogle Scholar
37. Chan, K. S., Met. Trans. A, 1994 (in press).Google Scholar
38. Deve, H. E. and Evans, A. G., Acta Metall., 39 11711176 (1991).CrossRefGoogle Scholar
39. Hall, E. O., Proc. Phys. Soc, London, Sect. B, 64, 747753 (1951).CrossRefGoogle Scholar
40. Petch, M. J., J. Iron Steel Inst., 174, 2528 (1953).Google Scholar
41. Hancock, J. W. and Mackenzie, A. C., J. Mech. Phys. Solids, 25, 147169 (1976).CrossRefGoogle Scholar
42. Bannister, M. and Ashby, M. F., Acta. Metall., 39 25722582 (1991).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fracture Toughness of Multiphase Intermetallics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fracture Toughness of Multiphase Intermetallics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fracture Toughness of Multiphase Intermetallics
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *