Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T06:13:18.091Z Has data issue: false hasContentIssue false

Formation of Nanocrystalline SiC Powder from Chlorine-Containing Polycarbosilane Precursors

Published online by Cambridge University Press:  21 February 2011

Brian S. Mitchell
Affiliation:
Department of Chemical Engineering, Tulane University New Orleans, LA 70118
Haoyue Zhang
Affiliation:
Department of Chemical Engineering, Tulane University New Orleans, LA 70118
Martin Ade
Affiliation:
TU Bergakademie FreibergInstitut für Keramische WerkstoffeFreiberg, Germany
Dirk Kurtenbach
Affiliation:
TU Bergakademie FreibergInstitut für Keramische WerkstoffeFreiberg, Germany
Eberhard Müller
Affiliation:
TU Bergakademie FreibergInstitut für Keramische WerkstoffeFreiberg, Germany
Get access

Abstract

Nanocrystalline β-SiC particulates with a grain size range of 5-20 nm were prepared by heating a pre-pyrolyzed, chlorine-containing polysilane/polycarbosilane (PS/PCS) to 1600°C. The transformation from the pre-pyrolyzed PS/PCS to nanocrystalline SiC was investigated by differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), mass-spectrometry and infrared spectroscopy. The results indicated that the nanocrystalline P-SiC was formed by the crystallization of the PS/PCS random network, and crosslinking of Si-Si, Si-Cl, and Si-CH2-Si bonds. The TEM observation showed that SiC particulates consist of equiaxed, randomly oriented, ultrafine grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mcdanels, D. L., “Analysis of Stress-Strain, Fracture and Ductility Behavior of Aluminum Matrix Composites Containing Discontinuous Silicon Carbide Reinforcement,” 113th Annual Meeting of the Am. Inst. Min. Metal. Petr. Eng., Los Angeles, 1984; published as NASA Technical Memorandum 83610.Google Scholar
2. Mohn, W. R. and Vukobratovich, D., “Engineered Metal Matrix Composites for Precision Optical System” Optomechanical Systems Engineering, Proceedings, Soc. Photo-Optical Instrum. Eng., Vol. 817, 1987.Google Scholar
3. Schmidt, K., Zweben, C., and Arsenault, R., Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites, ASTM STP 1080, Kennedy, J. M., Moeller, H. H., and Johnson, W. S., Eds., Am. Soc. Test. Mater., Philadelphia, 1990, pp. 155164.Google Scholar
4. Hwang, H. J. and Niihara, K., J. Mater. Res., 13 [10] 2866–70 (1998).Google Scholar
5. Zhao, J., Steams, L. C., Harmer, M. P., Chan, H. M., Miller, G. A., and Cook, R. F., J. Am. Ceram. Soc., 76 [2] 503–10 (1993).Google Scholar
6. Hwang, H. J., Sekino, T., Ota, K., and Niihara, K., J. Mater. Sci. 31, 4617–24 (1996).Google Scholar
7. Pan, X., Mayer, J., and Rühle, M., J. Am. Ceram. Soc., 79 [3] 585–90 (1996).Google Scholar
8. Martin, H.-P., Irmer, G., and Muller, E., J. Europ. Ceram. Soc., 18, 193–9 (1998).Google Scholar
9. Richter, R., Roewer, G., Boehme, U., Busch, K., Babonneau, F., Martin, H. P., Mdller, E., Appl. Organomet. Chem., 11, 71106 (1997).Google Scholar
10. Martin, H.-P., Müller, E., Richter, R., Roewer, G., and Brendler, E., J. Mater. Sci. 32, 1381–7 (1997).Google Scholar
11. West, R., in: Comprehensive Organometallic Chemistry, Wilkinson, G., Stone, F. G. A., and Abel, E., Eds., Pergamon, Oxford, 1982, pp 365–97.Google Scholar
12. BacquJ, E., Pillot, J.-P., Birot, M., Dunogus, J. and Lapouyade, P., Chem. Mater. 3, 348 (1991).Google Scholar
13. Klug, H.P. and Alexander, L.E., “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials,” 2nd edition, Wiley, NY, 1974, p. 662.Google Scholar
14. Jagodzinski, H. and Arnold, H., “Silicon Carbide, a High Temperature Semiconductor”, Pergamon Press, Oxford, O'Connor, J.R. and Smiltens, J., eds., 1960, pp. 136146.Google Scholar
15. Kissinger, H. E., Annal. Chem. 29, 1702 (1957).Google Scholar
16. Karch, H., Birringer, R. and Gleiter, H., Nature (London), 330, 556–8 (1987).Google Scholar
17. Siegel, R. W. and Hahn, H., in: Current Trends in Physics of Materials, Yussouff, M., ed., World Scientific, Singapore, 1987, p. 403.Google Scholar