Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 0.236 Render date: 2021-04-13T23:10:00.312Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Formation of dense and aligned planar arrangements of Pb nanoparticles at silica/silicon interfaces

Published online by Cambridge University Press:  22 March 2011

Flavia P. Luce
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Felipe Kremer
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Dario F. Sanchez
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Zacarias E. Fabrim
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil Escola de Engenharia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Shay Reboh
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil Escola de Engenharia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Fernando C. Zawislak
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Paulo F. P. Fichtner
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil Escola de Engenharia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
Get access

Abstract

The ion beam synthesis of Pb nanoparticles (NPs) in silica/silicon films is studied in terms of the combination of a two-step annealing process consisting of a low temperature long time aging treatment followed by a high temperature short time furnace annealing. The samples are analyzed through Rutherford Backscattering Spectrometry and Transmission Electron Microscopy. The aging process leads to the suppression of the classical homogeneous nucleation of metallic Pb NPs in the silica, thus promoting Pb redistribution during the high temperature annealing. This causes the formation of dense bi-dimensional NP arrays located at the silica-silicon interface, presenting small size dispersion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. De Marchi, G., , Mattei, G., Mazzoldi, P., sada, C. and Miotello, A.. J. Apll. Phys. 92, 4249 (2002).CrossRefGoogle Scholar
2. Heinig, K. H., Müller, T., Schmidt, B., Strobel, M. and Möller, W.. Apll. Phys. A 77, 17 (2003).CrossRefGoogle Scholar
3. Bernas, H.. Materials Science With Ion Beam, Topics in Applied Physics 116, Springer (2009).Google Scholar
4. Ren, F., Xiao, X. H., Cai, G. X., Wang, J. B. and Jiang, C. Z.. Appl. Phys. A 96, 317 (2009).CrossRefGoogle Scholar
5. Kremer, F., Lopes, J. M. J., Zawislak, F. C. and Fichtner, P. F. P.. Appl. Phys. Letters 91, 083102 (2007).CrossRefGoogle Scholar
6. Luce, F. P., Kremer, F., Reboh, S., Fabrim, Z. E., Sanchez, D. F., Zawislak, F. C. and Fichtner, P. F. P.. J. Appl. Phys. 109, 014320 (2011).CrossRefGoogle Scholar
7. Patnaik, P.. Handbook of Inorganic Chemicals. McGraw-Hill (2002).Google Scholar
8. Rajesh, C., Majumder, C., Rajan, M. G. R. and Kulshreshtha, S. K.. Phys. Rev. B 72, 235411 (2005).CrossRefGoogle Scholar
9. Shvatsburg, A. and Jarrold, M. F.. Chem. Phys Letters 317, 615 (2000).CrossRefGoogle Scholar
10. Pushpa, R., Waghmare, U. and Narasimhan, S.. Phys. Rev. B 77, 045427 (2008).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 23 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of dense and aligned planar arrangements of Pb nanoparticles at silica/silicon interfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of dense and aligned planar arrangements of Pb nanoparticles at silica/silicon interfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of dense and aligned planar arrangements of Pb nanoparticles at silica/silicon interfaces
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *