Skip to main content Accessibility help
×
Home

Formation of Cu2ZnSnS4 and Cu2ZnSnS4-CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-Ray Diffraction

Published online by Cambridge University Press:  01 February 2011

Alfons Weber
Affiliation:
alfons.weber@hmi.de, Hahn-Meitner-Institut, SE3, Glienicker Str. 100, Berlin, 14109, Germany
Immo Kötschau
Affiliation:
koetschau@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Susan Schorr
Affiliation:
susan.schorr@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Hans-Werner Schock
Affiliation:
hans-werner.schock@hmi.de, Hahn-Meitner-Institut, Solar Energy Division, Glienicker Str. 100, Berlin, 14109, Germany
Get access

Abstract

Chalcopyrite CuInS2 and the structurally related kesterite Cu2ZnSnS4 are known as photovoltaic absorber materials. In this study different precursor thin films of the quaternary Cu-Zn-Sn-S system (stacking: Mo/CuS/ZnS-SnS) and of the pentenary Cu-In-Zn-Sn-S system (stacking: Mo/CuIn/ZnS-SnS) were annealed in sulfur atmosphere. The predominant crystalline phases were detected by in-situ energy dispersive X-ray diffraction (EDXRD). Additionally the X-ray fluorescence signals of the film components were recorded to detect diffusion effects. For the quaternary system we found ZnS, CuS, Cu2-xS, Sn2S3 and SnS as main binary phases during annealing. The Sn2S3-SnS phase transition had a significant impact on the later formation of ternary/quaternary phases. A high diffusivity of copper can explain the little influence of the precursor stacking on the reaction path and may also be responsible for the poor adhesion of the films. For annealing temperatures above 450°C Cu2ZnSnS4 can be identified clearly by XRD. The incorporation of indium in the system leads to new diffraction peaks which can be explained by the formation of solid solutions in the system CuInS2-Cu2ZnSnS4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kobayashi, T., Jimbo, K., Tsuchida, K., Shinoda, S., Oyanagi, T., Katagiri, H., Jap. J. Appl. Phys. 44, 783787 (2005).CrossRefGoogle Scholar
2. Seol, J., Lee, S., Lee, J., Nam, H., Kim, K., Sol. En. Mat.& Sol. Cel. 75, 155162 (2003).CrossRefGoogle Scholar
3. Katagiri, H., Thin Solid Films 480-481, 426432 (2005).CrossRefGoogle Scholar
4. Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W., Araki, H., Oishi, K., Katagiri, H., Thin Solid Films, (2007) (in press).Google Scholar
5. Johnson, J.B., Jones, H., Latham, B.S., Parker, J.D., Engelken, R.D., Barber, C., Semicond. Sci. Technol. 14, 501507 (1999).CrossRefGoogle Scholar
6. Yuan, H.J., Xie, S.S., Liu, D.F., Yan, X.Q., Zhou, Z.P., Ci, L.J., Wang, J.X., Gao, Y., Song, L. Liu, L.F., Zhou, W.Y., Wang, G., J. Cryst. Growth 258, 225231 (2003).CrossRefGoogle Scholar
7. Klenk, R., Klaer, J., Scheer, R., Ch, M., , Lux-Steiner, Luck, I., Meyer, N., Rühle, U., Thin Solid Films 480-481, 509514 (2005).CrossRefGoogle Scholar
8. Klopmann, Ch.von, Djordjevic, J., Scheer, R., J. Cryst. Growth 289, 113120 (2006).CrossRefGoogle Scholar
9. Pfisterer, F., PhD Thesis, University of Stuttgart (1987), p.78 ff.Google Scholar
10. Will, G., Hinze, E., Abdel, R., Europ. J. Miner. 14, 591598 (2002).CrossRefGoogle Scholar
11. Friedlmeier, T.A. Magorian, PhD Thesis, University of Stuttgart (2001), p. 1415.Google Scholar
12. McMaster, W.H., Grande, N. Kerr del, Mallett, J.H., Hubbell, J.H., Lawrence Livermore National Laboratory Report UCRL-50174, Sec. II, Rev. 1, Lawrence Livermore National Laboratory, Livermore CA, 1969-1970.Google Scholar
13. Berger, R., Bucur, R.V., Sol. Stat. Ionics 89, 269278 (1996).CrossRefGoogle Scholar
14. Gartsman, K., Chernyak, L., Lyahovitskaya, V., Cahen, D., Didik, V., Kozlovsky, V., Malkovich, R., Skoryatina, E., Usacheva, V., J. Appl. Phys. 82 (9), 42824285 (1997).CrossRefGoogle Scholar
15. Wiflmann, S., Becker, K.D., Sol. State Ionics 101-103, 539545 (1997).Google Scholar
16. Olekseyuk, I.D., Dudchak, I.V., Piskach, L.V., J. All. Comp. 368, 135143 (2004).CrossRefGoogle Scholar
17. Klenk, R., Walter, T., Schock, H.W., Cahen, D., Adv. Mater. 5, 114119 (1993).CrossRefGoogle Scholar
18. Hergert, F., Jost, S., Hock, R., Purwins, M., Palm, J., Phys. St. Sol.(a) 203, 26152623 (2006).CrossRefGoogle Scholar
19. Hergert, F., Hock, R., Thin Solid Films, (2007) (in press).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 7 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-r88h9 Total loading time: 0.326 Render date: 2021-01-24T00:52:46.106Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of Cu2ZnSnS4 and Cu2ZnSnS4-CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-Ray Diffraction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of Cu2ZnSnS4 and Cu2ZnSnS4-CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-Ray Diffraction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of Cu2ZnSnS4 and Cu2ZnSnS4-CuInS2 Thin Films Investigated by In-Situ Energy Dispersive X-Ray Diffraction
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *