Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T00:37:43.446Z Has data issue: false hasContentIssue false

First-Principles Theory of Alloy Phase Diagrams

Published online by Cambridge University Press:  28 February 2011

Alex Zunger
Affiliation:
Solar Energy Research Institute, Colden, CO 80401
L. G. Ferreira
Affiliation:
Solar Energy Research Institute, Colden, CO 80401
S.-H. Wei
Affiliation:
Solar Energy Research Institute, Colden, CO 80401
Get access

Abstract

Temperature-composition phase diagrams of alloys are calculated by a new method combining (i) first principles total energy calculations (at T=0) for ordered structures, using the local density formalism, with (ii) finite-temperature statistical-mechanics approach (the Cluster Variation Method) to the solution of the multi-spin Ising model, using volume-dependent interaction energies obtained from (i). Novel features, including the appearance of metastable long-range ordered compounds at low temperatures are discovered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Darken, L. S. and Curry, R. W., Physical Chemistry of Metals (McGraw Hill, New York, 1953).Google Scholar
2. Domb, C. in Phase Transition and Critical Phenomena, edited by Domb, C. and Green, H. S. (Academic, London, 1974), Vol. 3, p. 357; D. M. Burley, ibid, Vol. 2, p. 329.Google Scholar
3. Fontain, D. De in Solid State Physics, edited by Ehrenreich, H., Seitz, F. and Turnbull, D. (Academic, New York, 1979), Vol. 34, p. 73; J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).Google Scholar
4. Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
5. Barker, J. A., Proc. Roy. Soc. (London) 216, 45 (1953).Google Scholar
6. Wei, S.-H., Mbaye, A. A., Ferriera, L. C. and Zunger, A., Phys. Rev. B 36, 4163 (1987); A. Zunger, S.-H. Wei, A. A. Mbaye and L. C. Ferreira, Acta. Metal. 36, 2239 (1988).Google Scholar
7. Connolly, J. W. D. and Williams, A. R., Phys. Rev. B 27, 5169 (1983).Google Scholar
8. Ferreira, L. C., Mbaye, A. A. and Zunger, A., Phys. Rev. B 37, 10547 (1988); ibid 35, 6475 (1987).Google Scholar
9. Srivastava, G. P., Martins, J. L. and Zunger, A., Phys. Rev. B 31, 2561 (1985); see erratum in Phys. Rev. B38, 12694, (1988); J. L. Mart-ins and A. Zunger, J. Mat. Res. 1, 523 (1986T. 10. J. Ihm, A. Zunger and M. L. Cohen, J. Phys. C 12, 4409 (1979).Google Scholar
11. Krakauer, H., Posternak, M., and Freeman, A. J., Phys. Rev. Lett. 43, 1885 (1979); S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985-.Google Scholar
12. Mbaye, A. A., Ferreira, L. G. and Zunger, A., Phys. Rev. Lett. 58, 49 (1987).Google Scholar
13. Ishida, K., Shumiya, T., Nomura, T., Ohtani, H., and Nishizawa, T., J. Less. Comm. Metals 142, 135 (1988).Google Scholar
14. Stringfellow, C. B., J. Phys. Chem. Solids 34, 1749 (1973); J. Cryst. Growth 27, 21 (1974).Google Scholar
15. Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 210 (1985).Google Scholar
16. Jen, H. R., Cherng, M. J. and Stringfellow, C. B., AppI. Phys. Lett. 48, 1603 (1986).CrossRefGoogle Scholar