Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T10:06:33.202Z Has data issue: false hasContentIssue false

Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanoshell Tubes

Published online by Cambridge University Press:  01 February 2011

Yun Luo
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Izabela Szafraniak
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Valanoor Nagarajan
Affiliation:
University of Maryland, College Park, MD 20742, USA
Ralf B. Wehrspohn
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Martin Steinhart
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany Institute of Physical Chemistry, University of Marburg, Hans-Meerwein-Straβe, D-35032 Marburg, Germany
Joachim H. Wendorff
Affiliation:
Institute of Physical Chemistry, University of Marburg, Hans-Meerwein-Straβe, D-35032 Marburg, Germany
Nicolai D. Zakharov
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Ramamoorthy Ramesh
Affiliation:
University of Maryland, College Park, MD 20742, USA
Marin Alexe
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany
Get access

Abstract

Wetting of the pore walls of porous templates is a simple and convenient method to prepare nanoshell tubes. Wafer-scale fabrication of ferroelectric lead zirconate titanate and barium titanate nanoshell tubes was accomplished by wetting porous silicon templates with polymeric precursors. The ferro- and piezoelectric properties of an individual ferroelectric nanoshell tube either of PZT or of BaTiO3 were electrically characterized by measuring the local piezoelectric hysteresis. A sharp switching at the coercive voltage of about 2 V was shown from the hysteresis loop. The corresponding effective remnant piezoelectric coefficient is about 90 pm/V. We have also prepared highly ordered arrays of free-standing ferroelectric nanoshell tubes obtained by partial etching of the silicon template. Such materials might be used as building blocks of miniaturized devices and could have a significant impact in the field of nano-electromechanical systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
2. Tans, S. J., Verschueren, A., and Dekker, C., Nature 393, 49 (1998).Google Scholar
3. Schmidt, O. G., and Eberl, K., Nature 410, 168 (2001).Google Scholar
4. Iijima, S., Nature 354, 56 (1991).Google Scholar
5. Whitesides, G. M., Mathias, J. P., and Seto, C. T., Science 254, 1312 (1991).Google Scholar
6. Ozin, G. A., Adv. Mater. 4, 612 (1992).Google Scholar
7. Schnur, J. M., Science 262, 1669 (1993).Google Scholar
8. Ghadiri, M., Granja, J. R., and Buehler, L. K., Nature 369, 301 (1994).Google Scholar
9. Martin, C. R., Science 266, 1961 (1994).Google Scholar
10. Hulteen, J. C., and Martin, C. R., J. Mater. Chem. 7, 1075 (1997).Google Scholar
11. Evans, E., Brownman, H., Leung, A., Needham, D., and Tirrell, D., Science 273, 933 (1996).Google Scholar
12. Hoyer, P., Langmuir 12, 1411 (1996).Google Scholar
13. Bognitzki, M., Haoqing, H., Ishaque, M., Frese, T., Hellwig, M., Schwarte, C., Schaper, A., Wendorff, J. H. and Greiner, A. Adv. Mater. 12, 637 (2000).Google Scholar
14. Hernandez, B. A., Chang, K. S., Fisher, E. R., and Dorhout, P. K., Chem. Mater. 14, 480 (2002).Google Scholar
15. Chang, K. S., Hernandez, B. A., Fisher, E. R., and Dorhout, P. K., J. Korean Chem. Soc. 46, 242 (2002).Google Scholar
16. Urban, J. J., Yun, W. S., Gu, Q., and Park, H., J. Am. Chem. Soc. 124, 1186 (2002)Google Scholar
17. Yun, W. S., Urban, J. J., Gu, Q., and Park, H., Nanoletters 2, 447 (2002).Google Scholar
18. Masuda, H., Fukuda, K., Science, 268, 1466 (1995)Google Scholar
19. Lehmann, V., J. Electrochem. Soc. 140, 2836 (1993).Google Scholar
20. Steinhart, M., Wendorff, J. H., Greiner, A., Wehrspohn, R. B., Nielsch, K., Schilling, J., Choi, J., and Gösele, U., Science 296, 1997 (2002).Google Scholar
21. Harnagea, C., Pignolet, A., Alexe, M., Hesse, D. and Goesele, U., Appl. Phys. A 70, 261 (2000).Google Scholar
22. An atomic force microscope provided with a conductive tip and a lock-in detection system is used to measure the piezoelectric vibrations generated by the sample via converse piezoelectric effect when an ac voltage is applied across the sample. The existence of a hysteresis in the piezoresponse signal is directly associated with the polarization switching in the sample region underneath the tip.Google Scholar
23. Gross Levi, B., Physics Today, 10, 14 (2002).Google Scholar
24. Alexe, M., Luo, Y., Szafraniak, I., Wehrspohn, R. B., and Steinhart, M., European Patent Application No. 03000969.0/2002Google Scholar