Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-rz424 Total loading time: 0.284 Render date: 2021-02-25T19:59:07.758Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fabrication and Characterization of Size- and Shape-Controlled C60 Nano/microcrystals by Solvent-Induced Reprecipitation Process (SIRP)

Published online by Cambridge University Press:  01 February 2011

Akito Masuhara
Affiliation:
masuhara@tagen.tohoku.ac.jp, Tohoku university, IMRAM, Katahira, 2-1-1, Aobaku, Sendai, 980-8577, Japan, +81-22-217-5645, +81-22-217-5645
Zhenquan Tan
Affiliation:
tanzq@mail.tagen.tohoku.ac.jp, IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hitoshi Kasai
Affiliation:
hkasai@tagen.tohoku.ac.jp, IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hachiro Nakanishi
Affiliation:
hnakanis@tagen.tohoku.ac.jp, IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Hidetoshi Oikawa
Affiliation:
oikawah@tagen.tohoku.ac.jp, IMRAM, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

We have first developed useful Solvent-Induced Reprecipitation Process, and have first succeeded in fabricating C60 nano/microcrystals with various shape and size, using m-xylene and 2-propanol as good and poor solvents, respectively.

It was found that the resulting C60 nano/microcrystals had a hexagonal crystal structure, and that were a kind of crystal solvates in which the molar ratio of C60 to m-xylene was 3:2. C60 nano/microcrystals could be said to be important nano components of integrated devices in electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Miller, B., Rosamilia, J. M., Dabbagh, G., Tycko, R., Haddon, R. C., Muller, A. J., Wilson, W., Murphy, D.W., and Hebard, A. F., J. Am. Chem. Soc. 113, 6291 (1991).CrossRefGoogle Scholar
2. Blau, W. J., Byrne, H. J., Cardin, D. J., Dennis, T. J., Hare, J. P., Kroto, H. W., Taylor, R., and Walton, D. R. M., Phys. Rev. Lett. 67, 1423 (1991).CrossRefGoogle Scholar
3. Eckert, J. F., Nicoud, J. F., Nierengarten, J. F., Liu, S. G., Echegoyen, L., Barigelletti, F., Armaroli, N., Ouali, L., Krasnikov, V., and Hadziioannou, G., J. Am. Chem. Soc. 122, 7467 (2000).CrossRefGoogle Scholar
4. Kasai, H., Okazaki, S., Hanada, T., Okada, S., Oikawa, H., Adschiri, T., Arai, K., Yase, K., and Nakanishi, H., Chem. Lett, L1392 (2000).CrossRefGoogle Scholar
5. Miyazawa, K., Kuwasaki, Y., Obayashi, A., and Kuwabara, M., J. Mater. Res. 17, 83 (2002).CrossRefGoogle Scholar
6. Nakanishi, T., Schmitt, W., Michinobu, T, Kurth, D. G., and Ariga, K., Chem. Commun, 5982 (2005).CrossRefGoogle Scholar
7. Wiley, B., Sun, Y., Chen, J., Cang, H., Li, Z. Y., Li, X., and Xia, Y., Mater. Res. Bull 30, 356 (2005)CrossRefGoogle Scholar
8. Murray, C. B., Kagan, C. R., and Bawendi, M. G., Science, 270, 1335 (1995).CrossRefGoogle Scholar
9. Kasai, H., Nalwa, H. S., Oikawa, H., Okada, S., Matsuda, H., Minami, N., Kakuta, A., Ono, K., Mukoh, A., and Nakanishi, H., Jpn. J. Appl. Phys. 31, L1132 (1992).CrossRefGoogle Scholar
10. Schmelzer, J. W. P., Mater. Phys. Mech, 6, 21 (2003)Google Scholar
11. Tan, Z., Masuhara, A., Kasai, H., Nakanishi, H., Oikawa, H., Jpn. J. Appl. Phys, 47 (2), 1426 (2008)CrossRefGoogle Scholar
12. Olmstead, M. M., Jiang, F. L., and Balch, A. L., Chem. Commun, 483 (2000).CrossRefGoogle Scholar
13. Korobov, M. V., Stukalin, E. B., Mirakyan, A. L., Neretin, I. S., Slovokhotov, Y. L., Dzyabchenko, A. V., Ancharov, A. I., and Torochko, B. P., Carbon 41, 2743 (2003).CrossRefGoogle Scholar
14. Minato, J. and Miyazawa, K., Carbon 43, 2837 (2005).CrossRefGoogle Scholar
15. Mayers, B. and Xia, Y. N., Adv. Mater. 14, 279 (2002).3.0.CO;2-2>CrossRefGoogle Scholar
16. Alargova, R. G., Deguchi, S., and Tsuji, K., J. Am. Chem. Soc. 123, 10460 (2001).CrossRefGoogle Scholar
17. Matijevic, E., Langmuir 10, 8 (1994)CrossRefGoogle Scholar
18. Aizenberg, J., Black, A. J., and Whitesides, G. M., 398, 495 (1999)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication and Characterization of Size- and Shape-Controlled C60 Nano/microcrystals by Solvent-Induced Reprecipitation Process (SIRP)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication and Characterization of Size- and Shape-Controlled C60 Nano/microcrystals by Solvent-Induced Reprecipitation Process (SIRP)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication and Characterization of Size- and Shape-Controlled C60 Nano/microcrystals by Solvent-Induced Reprecipitation Process (SIRP)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *