Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T14:48:29.343Z Has data issue: false hasContentIssue false

Excimer Laser Interactions with Ptfe Relevant to thin Film Growth

Published online by Cambridge University Press:  22 February 2011

J.T. Dickinson
Affiliation:
Washington State University, Pullman, WA 99164-2814
M.G. Norton
Affiliation:
Washington State University, Pullman, WA 99164-2814
J.-J. Shin
Affiliation:
Washington State University, Pullman, WA 99164-2814
W. Jiang
Affiliation:
Washington State University, Pullman, WA 99164-2814
S.C. Langford
Affiliation:
Washington State University, Pullman, WA 99164-2814
Get access

Abstract

Recently, thin films of polytetrafluroethylene (PTFE) have been grown using pulsed laser ablation of TeflonTM at 266 nm.1,2 To provide further insight into the growth mechanisms we have examined the neutral and charged particle emissions generated in vacuum by 0 - 3 J/cm2 pulses of 248 nm radiation incident on solid PTFE. Measurements include quadrupole and time-of-flight mass spectroscopy. We find in addition to the neutral monomer (C2F4), copious emissions of highly reactive neutral and charged radicals, e.g., CF2, CF3, CF, F, and Cx. A careful analysis of the fluence dependence of these products provides definitive evidence that their precursors are generated by a thermally driven unzipping reaction. Models for the production of the radical species with the observed energies (several eV) involving gas phase processes are presented. Implications for improving PTFE thin film growth will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blanchet, G.B. and Shah, I., Appl. Phys. Lett. 62, 1026 (1993).CrossRefGoogle Scholar
2. Blanchet, G. B., Fincher, C. R. Jr., Jackson, C. L., Shah, S.I., and Garner, K. H., Science 262, 719 (1993).CrossRefGoogle Scholar
3. Fracassi, F., Occhiello, E., Coburn, J. W., J. Appl. Phys. 62, 3980 (1987).Google Scholar
4. d'Agostino, R., Fracassi, F., and Illuzzi, F., J. Appl. Poly. Sci. Appl. Poly. Symp. 46, 17 (1990).CrossRefGoogle Scholar
5. Stuke, M. and Zhang, Y., Proc. Electrochem. Soc. 88 (10), 7081 (1987).Google Scholar
6. Goodwin, P.M. and Otis, C.E., J. Appl. Phys. 69, 2584 (1991).Google Scholar
7. Kurosaki, K., J. Appl. Polym. Sci. Applied Polym. Symp. 48,401 (1991).Google Scholar
8. Gardella, J A. Jr., Hercules, D.M., and Heinen, H.J., Spectros. Lett. 13, 347 (1980).Google Scholar
9. Eschbach, P.A., Dickinson, J.T., Langford, S.C., and Pederson, L.R., J. Vac. Sci. Technol. A 7, 2943 (1989).Google Scholar
10. Basting, D., Sowada, U., Voss, F., and Oesterlin, P., in: Gas and Metal Vapor Laser and Applications, SPIE Proceedings 1412, 80 (1991).Google Scholar
11. Kuper, S. and Stuke, M., Appl. Phys. Lett. 54, 5 (1989).Google Scholar
12. Dickinson, J. T., Shin, J-J., Jiang, W., and Norton, M. G., J. Appl. Phys. 74, 4729 (1993).Google Scholar
13. Heller, S.R. and Milne, G.W.A., EPA/NIH Mass Spectral Data Base (NBS, U.S. Dept. of Commerce, Washington DC, 1978).Google Scholar
14. Dickinson, J.T., Jensen, L.C., Doering, D.L., and Yee, R., J. Appl. Phys. 67, 3641 (1990).Google Scholar
15. Langford, S.C., Jensen, L.C., Dickinson, J.T., and Pederson, L.R., J. Appl. Phys. 68, 4253 (1990).Google Scholar
16. Krevelen, D.W. Van, Properties of Polymers, (Elsevier, Amsterdam, 1976), p. 461.Google Scholar
17. Madorsky, S.L., Thermal Degradation of Organic Polymers, (Interscience, New York, 1964), pp. 135137.Google Scholar
18. Grassie, N. and Scott, G., Polymer Degradation and Stabilization, (Cambridge University Press, Cambridge, 1985), pp. 2324.Google Scholar
19. Siegle, J.C., Muus, L.T., Lin, T.-P., and Larsen, H.A., J. Polym. Sci. A 2, 391 (1964).Google Scholar
20. Herman, P.R., Chen, B., and Moore, D.J., to be published.Google Scholar