Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T10:23:34.562Z Has data issue: false hasContentIssue false

EuTe/PbTe Superlattices: Mbe Growth and Optical Characterization

Published online by Cambridge University Press:  21 February 2011

G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria
Shu Yuan
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria
M. Kriechbaum
Affiliation:
Institut für Theoretische Physik, Karl Franzens Universität Graz, A - 8010 Graz, Austria
H. Krenn
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität Linz, A - 4040 Linz, Austria
Get access

Abstract

The heteroepitaxial growth of EuTe on PbTe (111) by molecular beam epitaxy (MBE) was investigated using in situ reflection high energy electron diffraction (RHEED). As a function of substrate temperature and Te2 flux rate, the resulting EuTe (111) surfaces exhibit several different surface reconstructions corresponding to Te-stabilized or Eu-stabilized surfaces. The Eustabilized surface shows a (2√3 × 2√3)R30° surface reconstruction. Because of the strain induced tendency for 3D islanding, only in a narrow window of MBE growth parameters perfect 2D layer-by-layer heteroepitaxial growth exists. Using such optimized MBE growth conditions, we have fabricated a series of PbTe/EuTe superlattices. In such superlattices the wide band gap EuTe layers act as barriers and the narrow band gap PbTe as quantum wells. The superlattices were investigated by high resolution x-ray diffraction, showing their high structural perfection. Modulated low temperature Fourier transform infrared reflection measurements were performed in order to determine the confined energy levels in the PbTe quantum wells. The measurements indicate that mini-subbands are formed in the PbTe quantum wells with a mini-band width of 22 meV in agreement with envelope function calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Partin, D. L., IEEE J. Quantum Electronics QE 24, 1716 (1988).Google Scholar
2. Ishida, A., Matsuura, S., Fujiyasu, H., Ebe, H. and Shinohara, K., Superlatt. Microstr. 2, 574 (1986).Google Scholar
3. Partin, D. L., Heremans, J., Thrush, C. M., Green, L. and Olk, C. H., Phys. Rev.B 38, 3549 (1988).Google Scholar
4. Heremans, J. and Partin, D. L., Phys. Rev. B 37, 6311 (1988).Google Scholar
5. Mauger, A. and Godart, C., Physics Reports 141, 51 (1986).Google Scholar
6. See, e.g. Physics of IV-VI Compounds and Alloys, edited by Rabii, S. (Gordon and Breach, 1974).Google Scholar
7. Springholz, G., Bauer, G. and Ihninger, G., J. Cryst. Growth, (1992) in press.Google Scholar
8. Springholz, G. and Bauer, G., Appl. Phys. Lett. (1993) in print.Google Scholar
9. Springholz, G. and Bauer, G., Appl. Phys. Lett. 60, 1600 (1992).Google Scholar
10. Snyder, C. W., Orr, B. G., Kessler, D. and Sander, L. M., Phys. Rev. Lett. 66, 3032 (1991).Google Scholar
11. Springholz, G. and Bauer, G., Proc.Mat.Res.Soc. (1993), in print.Google Scholar
12. Koppensteiner, E., Springholz, G.. Hamberger, P. and Bauer, G., submitted to J.Appl.Phys.Google Scholar
13. Yuan, Shu, Springholz, G., Krenn, H., Bauer, G., Kriechbaum, M., Appl. Phys. Lett. 62, 885 (1993).Google Scholar
14. Yuan, Shu, Springholz, G., Frank, N., Krenn, H., Bauer, G., Kriechbaum, M., Mat. Res. Soc. Proc. Proceedings, San Francisco, (1993), submitted.Google Scholar