Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T13:31:19.621Z Has data issue: false hasContentIssue false

Epitaxial Growth of AlN on 3C-SiC and Al2O3 Substrates

Published online by Cambridge University Press:  25 February 2011

B. S. Sywe
Affiliation:
Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506–5102.
Z. J. Yu
Affiliation:
Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506–5102.
J. H. Edgar
Affiliation:
Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506–5102.
Get access

Abstract

A1N films were grown on the (100) plane of 3C-SiC/Si and the (0001) plane of A12O3 substrates by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum (TMA) and ammonia (NH3) as the precursors. The deposited films were characterized by X-ray diffraction (XRD) and a Read thin film camera. At 1150°C, preferentially oriented polycrystalline AlN films were obtained on both substrates and the crystal structure was wurtzite. The epitaxial relations were (1010)AlN//(100)SiC//(100)Si and (0001)AlN// (0001)Al2O3. The attempt to grow cubic AlN on 3C-SiC/Si was not successful.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Werdecker, W. and Aldinger, F., IEEE Trans. Compon., Hybrids, Manuf. Technol. CHMT-7, 399 (1984).Google Scholar
2. Takamizawa, H., Kamata, T., and Noguchi, S., IEEE Trans. Compon., Hybrids, Manuf. Technol. CHMT-8, 247 (1985).Google Scholar
3. Fujieda, S., Mizuta, M., and Matsumoto, Y., Jpn. J. Appl. Phys. 27, L296 (1988).Google Scholar
4. Hasegawa, F., Takahashi, T., Kubo, K., Ohnari, S., Nannichi, Y., and Arai, T., Jpn. J. Appl. Phys. 26, L1448 (1987).Google Scholar
5. Akasaki, I., Amano, H., Hiramatsu, K., and Sawaki, N., Inst. Phys. Conf. Ser. No. 91, 80 (1988).Google Scholar
6. Gaskill, D. K., Bottka, N., and Lin, M. C., J. Cryst. Growth 77, 418 (1986).CrossRefGoogle Scholar
7. Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).Google Scholar
8. Duffy, M. T., Wang, C. C., O'Clock, G. D. Jr, McFarlane, S. H. III, and Zanzucchi, P. J., J. Electron. Mater. 2, 359 (1973).CrossRefGoogle Scholar
9. Liu, J. K., Lakin, K. M., and Wang, K. L., J. Appl. Phys. 46, 3703 (1975).Google Scholar
10. Rensch, U. and Eichhorn, G., Phys. Stat. Sol. (a) 77, 195 (1983).CrossRefGoogle Scholar
11. Matloubian, M. and Gershenzon, M., J. Electron. Mater. 14, 633 (1985).Google Scholar
12. Morita, M., Uesugi, N., Isogai, S., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 20, 17 (1981).Google Scholar
13. Morita, M., Isogai, S., Shimizu, N., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 20, L173 (1981).Google Scholar
14. Kawakami, H., Sakurai, K., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 27, L161 (1988).CrossRefGoogle Scholar
15. Meng, W. J., Heremans, J., and Cheng, Y. T., Appl. Phys. Lett. 59, 2097 (1991).Google Scholar
16. Yoshida, S., Misawa, S., and Gonda, S., J. Vac. Sci. Technol. B1, 250 (1983).Google Scholar
17. Sherwin, M. E. and Drummond, T. J., J. Appl. Phys. 69, 8423 (1991).CrossRefGoogle Scholar
18. Sitar, Z., Paisley, M. J., Yan, B., and Davis, R. F., Mater. Res. Soc. Symp. Proc. 162, 537 (1990).Google Scholar
19. Paisley, M. J., Sitar, Z., Posthill, J. B., and Davis, R. F., J. Vac. Sci. Technol. A7, 701 (1989).Google Scholar
20. Powell, J. A., Matus, L. G., and Kuczmarski, M. A., J. Electrochem. Soc. 134, 1557 (1987).Google Scholar
21. Akasaki, I. and Hashimoto, M., Solid State Commun. 5, 851 (1967).Google Scholar
22. Edgar, J. H., Yu, Z. J., and Sywe, B. S., Thin Solid Films 204, 115 (1991).Google Scholar