Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T17:25:54.988Z Has data issue: false hasContentIssue false

Epitaxial Film Growth of Single Crystal Ce/V Prepared by Molecular-Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

Hitoshi Homma
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Kai-Y. Yang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Ivan K. Schuller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The growth of epitaxial films of cerium (Ce)/vanadium (V)/on single crystal sapphires (α-A1203) was studied by in-situ reflection high energy electron diffraction and x-ray scattering. For the first time Ce(111) single crystal film was grown on V(110)/α-A12O3 (1120) in the Frank-van der Merwe mode. A new epitaxial orientation, different from the well known Nishiyama-Wasserman or Kurdjumov-Sachs orientations is found in the present study. Subsequent V(110) layers grow epitaxially with three equivalent domains.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dynamical Phenomena at Surfaces, Interfaces and Superiattices, edited Nizzoli, F., Rieder, K. H. and Willis, R. F., (Springer-Verlag, Berlin, 1985).Google Scholar
2. Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic, New York, 1985).Google Scholar
3. For a recent review see Birgeneau, R. J. and Horn, P. M., Science 232, 329 (1986).Google Scholar
4. Ramirez, R., Rahman, A., and Schuller, I. K., Phys. Rev. B30, 6208 (1984) and references therein.Google Scholar
5. Kosterlitz, J. M. and Thouless, D. J., J. Phys. C6, 1181 (1973);Google Scholar
Halperin, B. I. and Nelson, D. R., Phys. Rev. Lett. 41, 121 (1978);Google Scholar
Young, A. P., Phys. Rev. B19, 1855 (1979).Google Scholar
6. Bak, Per, Rep. Prog. Phys. 45, 587 (1982).Google Scholar
7. Novaco, A. D. and McTague, J. P., Phys. Rev. Lett. 38, 1286 (1977).CrossRefGoogle Scholar
8. For a review see, Venables, J. A., Spiller, G. D. T. and Hanbacken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
9. Bruce, L. A. and Jaeger, H., Phil. Mag. A38, 223 (1978).Google Scholar
10. van der Merwe, J. H., Phil. Mag. A45, 159(1982).CrossRefGoogle Scholar
11. Kwo, J., Hong, M., and Nakahara, S., Appl. Phys. Lett. 49, 319 (1986).Google Scholar
12. See for example, Buerger, M. J., The Precession Method, (John Wiley, New York, 1964).Google Scholar
13. Slater, J. C., Symmetry and Energy Bands in Crystals, (Dover, New York, 1972), p. 21.Google Scholar
14. Durbin, S. M., Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1983 (unpublished).Google Scholar
15. Koskenmaki, D. C. and Gschneidner, K. A. Jr, in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr, and Eyring, L. R., (North-Holland, Amsterdam, 1978), Vol. 1, p. 337.Google Scholar
16. Gschneidner, K. A. Jr, Rare Earth Allooys, (Van Nostrand, Princeton, 1961).Google Scholar
17. Beaudry, B. J. and Palmer, P. E., J. Less-Common Metals 34, 225 (1974).CrossRefGoogle Scholar
18. Maple, M. B., DeLong, L. E., and Sales, B. C., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, K. A. Jr, and Eyring, L. R., (North-Holland, Amsterdam, 1978), Vol. 1, p. 797.Google Scholar
19. Homma, H., Chun, C. S. L., Zheng, G.-G., and Schuller, I. K., Phys. Rev. 33, 3562 (1986).Google Scholar
20. Lee, P. A., Rice, T. M., Serene, J. W., Sham, L. J., and Wilkins, J. W., Comments on Condensed Matter Physics 12, 99 (1986).Google Scholar