Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T04:11:23.911Z Has data issue: false hasContentIssue false

Epistemic and Aleatory Uncertainty in Recommended, Generic Rock Kd Values used in Performance Assessment Studies

Published online by Cambridge University Press:  21 March 2011

James Crawford
Affiliation:
Department of Chemical Engineering and Technology Royal Institute of Technology, S-10044 Stockholm, Sweden
Ivars Neretnieks
Affiliation:
Department of Chemical Engineering and Technology Royal Institute of Technology, S-10044 Stockholm, Sweden
Luis Moreno
Affiliation:
Department of Chemical Engineering and Technology Royal Institute of Technology, S-10044 Stockholm, Sweden
Get access

Abstract

Over the past decade or so there has been an explosion in the number of sorption modelling approaches and applications of sorption modelling for understanding and predicting solute transport in natural systems. The most widely used and simplest of all models, however, is that employing a constant distribution coefficient (Kd) relating the sorbed concentration of a solute on a mineral surface and its aqueous concentration.

There are a number of reasons why a constant partitioning coefficient is attractive to environmental modellers for predicting radionuclide retardation, and in spite of all the shortcomings and pitfalls associated with such an approach, it remains the leitmotif of most performance assessment transport modelling.

This paper examines the scientific basis underpinning the Kd-approach and its broad defensibility in a performance assessment framework. It also examines sources of epistemic and aleatory uncertainty that undermine confidence in Kd-values reported in the open literature. The paper focuses particularly upon the use of so-called “generic” data for generalised rock types that may not necessarily capture the full material property characteristics of site-specific materials.

From the examination of recent literature data, it appears that there are still a number of outstanding issues concerning interpretation of experimental laboratory data that need to be considered in greater detail before concluding that the recommended values used in performance assessments are indeed conservative.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Torstenfelt, B., Eliasson, T., Allard, B., Andersson, K., Höglund, S., and Ittner, T., in Mater. Res. Soc. Symp. Proc. 15, 339346 (1983).Google Scholar
2. Skagius, K., Neretnieks, I., Water Resour. Res., 22(3), 389–98 (1986).Google Scholar
3. Eriksen, T., Locklund, B., SKB Technical Report TR-89-25, Swedish Nuclear Fuel Waste Management Company (SKB), 1989.Google Scholar
4. Johansson, H., Siitari-Kauppi, M., Skålberg, M., Tullborg, E. L., J. Contam. Hydrol., 35(1-3), 4153 (1998).Google Scholar
5. Yamaguchi, T., and Nakayama, S.,J. Contam. Hydrol., 35(1-3), 5565 (1998)Google Scholar
6. Elert, M., and Svensson, H., SKB Technical Report TR-01-12, Svensk Kärnbränslehantering AB (Swedish Nuclear Fuel Waste Management Company), 2001.Google Scholar
7. Alexander, W. R., McKinley, I. G., MacKenzie, A. B., and Scott, R. D., in Mat. Res. Soc. Symp. Proc., 176, 567576 (1990).Google Scholar
8. Smellie, J. A. T., Mackenzie, A. B., and Scott, R. D., Chem. Geol., 55(3-4), 233254 (1986).Google Scholar
9. Smellie, J. A. T., and Karlsson, F., Eng. Geol., 52(3-4), 193220 (1999).Google Scholar
10. Kinniburgh, D. G., Environ. Sci. Technol., 20, 895904 (1986).Google Scholar
11. Ohe, T., Nucl. Technol., 67(1), 92101 (1984).Google Scholar
12. Voegelin, A., Vulava, V. M., Kuhnen, F., and Kretzschmar, R., J. Contam. Hydrol., 46(3-4), 319338 (2000).Google Scholar
13. Vulava, V. M., Kretzschmar, R., Barmettler, K., Voegelin, A., Grolimund, D., and Borkovec, M., Water Resour. Res., 38(5), 17 (2002).Google Scholar
14. Haworth, A., Adv. Colloid Interfac., 32, 4378 (1990).Google Scholar
15. Cernik, M., Borkovec, M., Westall, J. C., Environ. Sci. Technol., 29(2), 413425 (1995).Google Scholar
16. Westall, J. C., in Mat. Res. Soc. Symp. Proc., 353, 937949 (1995).Google Scholar
17. Cernik, M., Borkovec, M., Westall, J. C., Langmuir, 12(25), 61276137 (1996).Google Scholar
18. Schindler, P. W., Stumm, W., in Aquatic Surface Chemistry, edited by Stumm, W. (Wiley, New York, 1987)Google Scholar
19. Dzombak, D. A., and Morel, F. M. M., Surface Complexation Modelling: Hydrous Ferric Oxide (Wiley, New York, 1990).Google Scholar
20. Hiemstra, T., Riemsdijk, W. H. Van, J. Colloid Interf. Sci., 179(2), 488508 (1996).Google Scholar
21. Jenne, E. A. (ed.), Adsorption of Metals by Geomedia (Academic Press, San Diego, 1998).Google Scholar
22. Davis, J. A., Coston, J. A., Kent, D. B., Fuller, C. C., Environ. Sci. Technol., 32(19), 28202828 (1998).Google Scholar
23. Logue, B. A., Smith, R. W., Westall, J. C., Appl. Geochem., 19(12), 19371951 (2004).Google Scholar
24. Kulik, D. A., Radiochim. Acta, 90, 815832 (2002).Google Scholar
25. Lützenkirchen, J., J. Colloid Interf. Sci., 210(2), 384390 (1999).Google Scholar
26. Lützenkirchen, J., J. Colloid Interf. Sci., 217(1), 818 (1999).Google Scholar
27. Lützenkirchen, J., J. Colloid Interf. Sci., 195(1), 149155 (1997).Google Scholar
28. Waite, T. D., Davis, J. A., Fenton, B. R., Payne, T. E., Radiochim. Acta, 88, 687693 (2000).Google Scholar
29. Payne, T. E., Davis, J. A., Ochs, M., Olin, M., Tweed, C. J., Radiochim. Acta, 92, 651661 (2004).Google Scholar
30. Turner, D. R., Sassman, S. A., J. Contam. Hydrol., 21(1-4), 311332 (1996).Google Scholar
31. Prikryl, J. D., Jain, A., Turner, D. R., Pabalan, R. T., J. Contam. Hydrol., 47(2-4), 241253 (2001).Google Scholar
32. Langmuir, D., in Mat. Res. Soc. Symp. Proc., 465, 769780 (1997).Google Scholar
33. Turner, D. R., Pabalan, R. T., Prikryl, J. D., Bertetti, F. P., in Mat. Res. Soc. Symp. Proc., 556, 583590 (1999).Google Scholar
34. Turner, D. R., Pabalan, R. T., Waste Manage., 19(6), 375388 (1999).Google Scholar
35. Neretnieks, I., J. Contam. Hydrol., 55(3-4), 175211 (2002).Google Scholar
36. Zhu, C., Comput. Geosci., 29(3), 351359 (2003).Google Scholar
37. Ochs, M. and Talerico, C., SKB Technical Report TR-04-18, Swedish Nuclear Fuel Waste Management Company (SKB), 2004.Google Scholar
38. Bradbury, M. H., and Baeyens, B., Radioact. Waste Manag., 122(2), 250253 (1998).Google Scholar
39. Byegård, J., Johanssson, H., and SkÅlberg, M., SKB Technical Report TR-98-18, Swedish Nuclear Fuel Waste Management Company (SKB), 1998.Google Scholar
40. Brandtly, S. L., and Mellott, N. P., Am. Mineral, 85(11-12), 17671783 (2000).Google Scholar
41. Löfgren, M., and Neretnieks, I., SKB Site Investigation Report, P-05-27, Swedish Nuclear Fuel Waste Management Company (SKB), 2005.Google Scholar