Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T16:35:52.860Z Has data issue: false hasContentIssue false

Enhanced Photoluminescence from Erbium-Doped Gap Microdisk Resonator

Published online by Cambridge University Press:  21 February 2011

D. Y. Chu
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
X. Z. Wang
Affiliation:
Department of Material Science and Engineering and the Materials Research Center, Northwestern University, 2225 N. Campus Drive, Evanston, IL 60208
W. G. Bi
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093–0407.
R. P. Espindola
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
S. L. Wu
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
B. W. Wessels
Affiliation:
Department of Material Science and Engineering and the Materials Research Center, Northwestern University, 2225 N. Campus Drive, Evanston, IL 60208
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093–0407.
S. T. Ho
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
Get access

Abstract

The fabrication and optical properties of an erbium-doped gallium phosphide microdisk resonator pumped by a Ti-sapphire laser at 980 nm were investigated. Enhanced Er3+ intra-4f-shell photoluminescence was observed in the microdisk resonator compared to a thin film, and is attributed to a microcavity effect. At low pumping power intensity, the photoluminescence from erbium-doped gallium phosphide microdisks is an order of magnitude more intense than that from a thin film sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
2. Takahei, K. and Taguchi, A., Mater. Sci. Forum, 83–87, 641 (1992).10.4028/www.scientific.net/MSF.83-87.641Google Scholar
3. Neuhalfen, A. J. and Wessels, B. W., Appl. Phys. Lett., 59, 2317 (1991).Google Scholar
4. Klein, P. B., Moore, F. G., and Dietrich, H. B., Mater. Sci. Forum, 83–87, 665 (1992).10.4028/www.scientific.net/MSF.83-87.665Google Scholar
5. Michel, J., Kimerling, L. C., Benton, J. L., Eaglesham, D. J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Xie, Y.-H., and Ferrante, R. F., Mater. Sci. Forum, 83–87, 653 (1992).Google Scholar
6. Xie, Y. H., Fitzgerald, E. A., and Mii, Y. J., J. Appl. Phys., 70, 3223 (1991).10.1063/1.349306Google Scholar
7. Benyattou, T., Seghier, D., Guillot, G., Moncorge, R., Galtier, P., and Charasse, M. N., Appl. Phys. Lett., 60, 350 (1992).Google Scholar
8. Wang, X. Z. and Wessels, B. W., Appl. Phys. Lett., 64, 1573 (1994).Google Scholar
9. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J., and Logan, R. A., Appl. Phys. Lett., 60, 289 (1992).Google Scholar
10. Chu, D. Y., Chin, M. K., Sauer, N. J., Xu, Z., Chang, T. Y., and Ho, S. T., IEEE Photon. Tech. Lett., 5, 1353 (1993).Google Scholar
11. Hovinen, M., Ding, J., Nurmikko, A. V., Grillo, D. C., Han, J., He, L., and Gunshor, R. L., Appl. Phys. Lett., 62, 3128 (1993).Google Scholar
12. Chin, M. K., Chu, D. Y., and Ho, S. T., J. Appl. Phys., 75, 3302 (1994).10.1063/1.356137Google Scholar
13. Slusher, R. E., Levi, A. F. J., Mohideen, U., McCall, S. L., Pearton, S. J., and Logan, R. A., Appl. Phys. Lett., 63, 1310 (1993).Google Scholar