Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-11T15:57:46.392Z Has data issue: false hasContentIssue false

Emission Energy Dependence of Transient Photoluminescence in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

C. Longeaud
Affiliation:
Laboratoire de Génie Electrique de Paris, E.S.E, Universitds Paris VI et XI, C.N.R.S. (U.A. 127), Plateau du Moulon, 91190, Gif/Yvette, France
E. Merk
Affiliation:
Laboratoire de Physique des Solides, C.N.R.S., 1 pl. A. Briand, 92195 Meudon Principal Cedex, France.
Get access

Abstract

The dependence upon emission energy of the transient photoresponse of photoluminescence in amorphous silicon in the time range 100 ns to 20 μs, and for temperatures between 100 K and 160 K has been the subject of a detailed study. Analysis of this dependence, as a function of temperature, is carried out in terms of band tail carrier thermalisation and recombination. By using the simple multiple trapping treatment for the thermalisation of photoexcited carriers in their respective band tails, and by allowing for a fast time- and temperaturedependent recombination through defects deep in the gap, we are able to reproduce the correct energy and time dependence, as well as the temperature behaviour. On the basis of this analysis, the significance of the dispersive parameters deduced from transient photoluminescence decays is discussed. Comparison with the results of transient experimental techniques such as time of flight will be given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tiedje, T., Rose, A., Solid St. Com. 37, 49(1981).Google Scholar
2 Orenstein, J., Kastner, M.A., Phys. Rev. Lett. 46, 1241(1981).CrossRefGoogle Scholar
3 Schmidlin, F.W., Phys. Rev. B 16, 2362(1977).Google Scholar
4 Marshall, J.M., Street, R.A., Thompson, M.J., Phil. Mag. B 54, 51(1986).Google Scholar
5 Andrianensens, G., Seynhaeve, G., J. non-cryst. Sol. 97&98, 133(1987).CrossRefGoogle Scholar
6 Longeaud, C., Fournet, G., Vanderhaghen, R., Phys. Rev. B 38, 7493(1988)CrossRefGoogle Scholar
7 Tsang, C., Street, R.A., Phys. Rev. B 19, 3027(1979).Google Scholar
8 Dunstan, D.J., Phil. Mag. B 46(6), 579 (1982).CrossRefGoogle Scholar
9 Merk, E., Czaja, W., Maschke, K., HeIv. Phys. Acta 56, 896(1983).Google Scholar
10 Maschke, K., Czaja, W., Merk, E., Phil. Mag. B 56, 457(1987).Google Scholar
11 Vanderhaghen, R., Longeaud, C., Proc. of 8th photovoltaic solar energy conf., Firenze, Italy, 987(1988).Google Scholar
12 Cabarrocas, P. Roca i, Equer, B., Huc, J., Lloret, A., Schmidt, J.P.M., Proc. of the 7th Photovoltaic Solar Energy Conf., Sevilla, Spain, 533(1986).Google Scholar
13 Nitta, Y., Abe, K., Atari, K., Okamoto, H., Hamakawa, Y., J. non-cryst. Solids, 97&90, 695(1987).Google Scholar
14 Nichols, C.S., Winer, K., Phys. Rev. B 38, 9850 (1988).Google Scholar
15 Spear, W.E., Cloude, C.S., Phil. Mag. B 58(5),467 (1988).Google Scholar
16 Tardy, J., Meaudre, R., Solid State Comm. 39, 1031 (1981)CrossRefGoogle Scholar
17 Premachandran, V., Narasimhan, K.L., Bapat, D.R., Phys. Rev. B 29(12), 7073 (1984).Google Scholar