Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T17:19:26.442Z Has data issue: false hasContentIssue false

Electron and Hole Trapping Dynamics in Semiconductor Nanocrystals: Femtosecond Nonlinear Transmission and Photoluminescence Study

Published online by Cambridge University Press:  15 February 2011

V. Klimov
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87544, klimov@lanl.gov
D. McBranch
Affiliation:
Chemical Sciences and Technology Division, CST-6, MS-J585, Los Alamos National Laboratory, Los Alamos, NM 87544, klimov@lanl.gov
Get access

Abstract

Application of two complementary femtosecond techniques (time-resolved nonlinear transmission and photoluminescence up-conversion) allows us to observe separately the electron and the hole relaxation paths in CdS nanocrystals. The obtained data indicate that hole relaxation channels are different at low and high pump fluences which is attributed to an Auger-process-assisted hole trapping at surface/interface states activated at high excitation intensities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klimov, V., Haring-Bolivar, P., and Kurz, H., Phys. Rev. B 53, 1463 (1996).Google Scholar
2.Klimov, V., Haring-Bolivar, P., Kurz, H., and Karavanskii, V., Superlattices and Microstructures 20, 395 (1996).Google Scholar
3.Nuss, M.C., Zinth, W., and Kaiser, W., Appl. Phys. Lett. 49, 1717 (1986).Google Scholar
4.Zhang, J.Z., O'Neil, R.H., and Roberti, T.W., Appl. Phys. Lett. 64, 1989 (1994).Google Scholar
5.Schoenlein, R.W., Mittleman, D.M., Shiang, J.J., Alivisatos, A.P., and Shank, C.V., Phys. Rev. Lett. 70, 1014 (1993).Google Scholar
6.O'Neil, M., Marahn, J., and McLendon, G., J. Phys. Chem. 94, 4356 (1990).Google Scholar
7.Bawendi, M.G., Carroll, P.J., Wilson, W.L., and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
8.Borelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. Phys. 61, 5399 (1987).Google Scholar
9.Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Ricard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Rodina, A.V., and Efros, Al.L., J. Opt. Soc. Am. B 10, 100 (1993).Google Scholar
10.Klimov, V. and Karavanskii, V., Phys. Rev. B 54, 8087 (1996).Google Scholar
11.Chesnoy, N., Harris, T.D., Hull, R., and Bras, L.E., J. Phys. Chem. 90, 3393 (1986).Google Scholar
12.O'Neil, M., Marohn, J., and McLendon, G., Chem. Phys. Lett. 168, 208 (1990).Google Scholar
13.Norris, D.J., Sacra, A., Murray, C.B., and Bawendi, M.G., Phys. Rev. Lett. 72, 2612 (1994).Google Scholar
14.Klimov, V., Hunsche, S., and Kurz, H., Phys. Rev. B 50, 8110 (1994).Google Scholar
15.Ghanassi, M., Schanne-Klein, M.C., Hache, F., Ekimov, A.I., Ricard, D., and Flytzanis, C., Appl. Phys. Lett. 62, 78 (1993).Google Scholar
16.Tomita, M. and Matsuoka, M., J. Opt. Soc. Am. B 7, 1198 (1990).Google Scholar
17.Hu, Y.Z., Lindberg, M., and Koch, S.W., Phys. Rev. B 42, 1713 (1990).Google Scholar