Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T15:28:32.534Z Has data issue: false hasContentIssue false

Electrical Properties of Metal-Oxide-Silicon Structures Wrm Sol-Gel Oxides

Published online by Cambridge University Press:  25 February 2011

W. L. Warren
Affiliation:
Departnent of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
P. M. Lenahan
Affiliation:
Departnent of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
C. J. Brinker
Affiliation:
Sandia National Laboratório, Albuquerque, NM 87185
Get access

Abstract

We have investigated the electronic properties of sol-gel derived films on silicon substrates. Our investigation involves SiO2, aluminosilicate and borosili cate oxides on silicon. Seme sol-gel oxides are excellait insulators; seme sol-gel films on silicon also exhibit quite low oxide/silicon interface trap densities. We have also subjected sol-gel films on silicon to 4 Mrad(SiO2) of radiation and have found that these structures appear to be radiation hard (very little radiation induced oxide space charge or interface trap generation). Our results strongly suggest that sol-gel processing could provide insulating films for a variety of microelectronic device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Sze, S.M., Semiconductor Devices Physics and Technology (Wiley and Sons, N.Y., 1985) p. 356)Google Scholar
2) LeComber, P.G. and Spear, W.E., Setriconductors and Semmetals D 21, 89 (1984).CrossRefGoogle Scholar
3) Snell, A.J., Spear, W.E., LeCanber, P.G. and Mackenzie, K., Appl. Phys. Lett., A 26, 83 (1981).CrossRefGoogle Scholar
4) Pande, K.P. and Gutierrez, D., Appl. Phys. Lett., 46, 416 (1985).CrossRefGoogle Scholar
5) Chang, H.L., Meiners, L.G. and Sa, C.J., Appl. Phys. Lett., 48, 375 (1986).CrossRefGoogle Scholar
6) Nicollian, E.H. and Brews, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, (John Wiley and Sons, N.Y., 1981), p. 800.Google Scholar
7) Schroder, D.K and Guldberg, J., Solid State Electronics, 14, 1285 (1971).CrossRefGoogle Scholar
8) Fitzgerald, D.J. and Grove, A.S., Proc. IEEE, 54, 1601 (1966).CrossRefGoogle Scholar
9) Weinberg, Z.A., Matties, D.C., Johnson, W.C. and Lampert, M.A., Rev. Sci. Insinui., 46, 201 (1975).CrossRefGoogle Scholar
10) Weimer, R.A., Lenahan, P.M., Marchione, T.A. and Brinker, C.J., Appl. Phys. Lett., 51, 1179 (1987).CrossRefGoogle Scholar
11) Terman, L.M., Solid State Electronics, 5, 289 (1962).CrossRefGoogle Scholar
12) Castagne, R., hebd, C.r.. seanc. Acad. Sci. Paris, 267, 866 (1968).Google Scholar
13) Kuhn, M., Solid State Electronics, 13, 873 (1970).CrossRefGoogle Scholar
14) Deal, B.E., MacKenna, E.L. and Castro, P.C., J. Electrochem. Soc., 116, 997 (1969).CrossRefGoogle Scholar
15) Nishi, Y., Tanaka, K., and Ohwada, A., Jpn, J. Appl. Phys., 11, 85 (1972).CrossRefGoogle Scholar
16) Lenahan, P.M. and Dressendorf, P.V. er, J. Appl. Phys., 55, 3495 (1984).CrossRefGoogle Scholar
17) Poindexter, E.H., Caplan, P.J., Deal, B.E. and Razouk, R.R., J. Appl. Phys., 52, 879 (1981).CrossRefGoogle Scholar
18) Mikawa, R.E. and Lenahan, P.M., J. Appl. Phys., 59, 2054 (1986).CrossRefGoogle Scholar
19) Lenahan, P.M., Warren, W.L., Dressendorfer, P.V. and Mikawa, R.E., Zeitschrift fur Physikalische Cheme Neue Folge, 151, 235 (1987).CrossRefGoogle Scholar
20) Grove, A.S., Physics and Technology of Seniconductor Devices (John Wiley and Sons, N.Y. 1967) 145.Google Scholar
21) Ong, D.G., Modern MOS Technology (McGraw Hill, N.Y. 1984) p. 64.Google Scholar