Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T03:08:48.957Z Has data issue: false hasContentIssue false

Electrical Properties of Diamond for Device Applications

Published online by Cambridge University Press:  10 February 2011

B. A. Fox
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
M. L. Hartsell
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
D. M. Malta
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
H. A. Wynands
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
G. J. Tessmer
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
D. L. Dreifus
Affiliation:
Kobe Steel USA Inc., Electronic Materials Center, P.O. Box 13608, Research Triangle Park, NC 27709.
Get access

Abstract

The semiconducting properties of diamond make it a material of interest for the fabrication of active electronic devices. Device performance depends on the properties of the host diamond film and the device structure. Improvements in the electronic properties of chemical vapor deposited (CVD) diamond films and in device design are required for development of commercial diamond devices. Hall-effect and capacitance-voltage measurements have been used to assess the electronic quality of diamond films and to evaluate potential device materials and structures. Homoepitaxial, highly oriented and polycrystalline CVD diamond films have been deposited and characterized by variable-temperature Hall-effect measurements. The highest room temperature hole mobility measured in a homoepitaxial film was 1590 cm2 /V•s where the compensation was ∼2 × 1015 cm-3. These properties are now beginning to approach those of the best type IIb natural diamonds. In a comparison of homoepitaxial, highly oriented diamond film, and polycrystalline diamond films, the room temperature hole mobility was 1470, 229 and 70 cm2/V•s, respectively. This data provides further evidence that the alignment of the grains improves the transport properties of diamond films. Capacitance-voltage measurements have been performed on single crystal type lib diamond with metal-insulating diamond-semiconducting diamond and metal-oxi de-semiconducting diamond structures. Using a conductance versus frequency technique, the density of interface states was estimated to be ∼1012 cm-2eV-1 for both structures. Although optimization of these structures must still be performed, the ability to measure the interface trap density offers the opportunity to provide direct feedback to the device fabrication process so that the structure may be optimized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holmes, J. S., Tessmer, A. J. and Dreifus, D. L., 2nd High Temperature Electronics Conference, edited by King, D. B. and Thome, F. V., Charlotte, NC, 1994), p. VI35.Google Scholar
2. Dreifus, D. L., Tessmer, A. J., Holmes, J. S. and Plano, L. S., Second International High Temperature Electronics Conferencs. edited by King, D. B. and Thome, F. V., Charlotte, NC,1994), p. VI-29.Google Scholar
3. Custers, J. F. H., Physica, 18, 489 (1952).Google Scholar
4. Collins, A. T. and Lightowlers, E. C., The Properties of Diamond; edited by Field, J. E., Academic Press, London, 1979, p. 79.Google Scholar
5. Fujimori, N., Nakahata, H. and Imai, T., Jpn. J of Appl. Phys., 29, 824 (1990).Google Scholar
6. Visser, E. P., Bauhuis, G. J., Janssen, G., Vollenberg, W., van Enckevort, W. J. P. and Giling, L. J., J. Phys. Condens. Matter, 4, 7365 (1992).Google Scholar
7. Malta, D. M., von Windheim, J. A., Wynands, H. A. and Fox, B. A., J. Appl. Phys., 77, 1536 (1995).Google Scholar
8. Seto, J. Y. W., J. Appl. Phys., 46, 5247 (1975).Google Scholar
9. Baccarani, G., Ricco, B. and Spadini, G., J. Appl. Phys., 49, 5565 (1978).Google Scholar
10. Fox, B. A., Stoner, B. R., Malta, D. M., Ellis, P. J., Glass, R. C. and Sivazlian, F. R., Dia. Rel. Mat., 3, 382 (1994).Google Scholar
11. Plano, M. A., Landstrass, M. I., Pan, L. S., Han, S., Kania, D. R., McWilliams, S. and Ager, J. W. III, Science, 260, 1310 (1993).Google Scholar
12. Fujimori, N. and Nishibayashi, Y., Dia. Rel. Mater., 1, 665 (1992).Google Scholar
13. Gildenblat, G. S., Grot, S. A. and Badzian, A., Proc. of the IEEE, 79, 647 (1991).Google Scholar
14. Shiomi, H., Mlshibayashi, Y. and Fujimori, N., Jpn. J. of Appl. Phys., 28, L2153 (1989).Google Scholar
15. Venkatesan, V., Das, K., von Windheim, J. A. and Geis, M. W., Appl. Phys. Lett., 63, 1065 (1993).Google Scholar
16. Ebert, W., Vescan, A. and Kohn, E., Dia. Rel. Mater., 3, 887 (1994).Google Scholar
17. Geis, M., Gregory, J. and Pate, B., IEEE Trans. Electron Dev., 38, 619 (1991).Google Scholar
18. Wynands, H. A., Hartsell, M. L. and Fox, B. A., Spring MRS Conference. edited by Carter, J. C.H., Gildenblat, G., Nakamura, S. and Nemanich, R. J., (Materials Research Society, San Francisco, CA, 1994), p. 235.Google Scholar
19. Fox, B. A., Hartsell, M. L., Malta, D. M., Wynands, H. A., Kao, C.-t., Plano, L. S., Tessmer, G. J., Henard, R. B., Holmes, J. S., Tessmer, A. J. and Dreifus, D. L., Dia. Rel. Mater., 4, 622 (1995).Google Scholar
20. Blakemore, J. S.,Semiconductor Statistics. (Dover Publications, Inc., New York, 1987).Google Scholar
21. Conwell, E. and Weisskopf, , Phys. Rev., 77, 388 (1950).Google Scholar
22. Miller, A. and Abrahams, E., 120, 745 (1960).Google Scholar
23. Collins, A. T., Phil. Trans. R. Soc. London A, 342, 233 (1993).Google Scholar
24. Nicollian, E. H. and Brews, J. R.,Metal Oxide Semiconductor Physics and Technology. (John Wiley & Sons, New York, 1982).Google Scholar
25. Schroder, D. K..Semiconductor Material and Device Characterization. (John Wiley & Sons, New York, 1990).Google Scholar