Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.22 Render date: 2022-08-18T23:29:48.232Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Electrical Communication Between Glucose Oxidase and Different Ferrocenylalkanethiol Chain Lengths

Published online by Cambridge University Press:  10 February 2011

Shai Rubin
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Georg Bar
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Russell W. Cutts
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Jimmy T. Chow
Affiliation:
Department of Chemistry, University of Texas/Dallas, Richardson, TX
John P. Ferraris
Affiliation:
Department of Chemistry, University of Texas/Dallas, Richardson, TX
Thomas A. Zawodzinski Jr.
Affiliation:
Electronics and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We describe the factors affecting the electron transfer process between the different components of a self-assembled mixed monolayer. The system is comprised of mixed monolayers containing aminoalkanethiols (AMATs) and ferrocenylalkanethiols (FATs) of variable chain lengths. We study the effects of different ratio of the two mixed monolayer components on the permeability of the monolayer towards a Ru(NH3)6C13 redox probe. In order to study the electrical communication between the enzyme and the mediator molecules, the enzyme glucose oxidase (GOx) was attached to the AMAT sites to create a biosensor device. The relative efficiency of a biosensor of each chain-length combination of FAT and AMAT was examined. In light of this comparison, we consider the critical factors for efficient electron transfer between the ferrocene mediator and the GOx redox active site immobilized as part of the surface-confined system. We find that the biosensor response is greatest when the enzyme and the FATs are attached to the surface with different alkane chain lengths. We also find strong evidence for the existence of domains of FAT and AMAT in the mixed monolayer system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J.E. J. Am. Chem. Soc. 1993, 115, 9389.(b) Dubios, L.H.; Nuzzo, R.G. Annu. Rev. Phys. Chem. 1992, 43, 437.CrossRefGoogle Scholar
2. Chidsey, C.E.D. Science 1991, 251, 919.CrossRefGoogle Scholar
3. (a) Poirier, G.E.; Tarlov, M.J. Langmuir 1994, 10, 2853. (b) Delamarche, E.; Michel, B.; Gerber, Ch.; Anselmetti, D.; Guntherodt, H.-J.; Wolf, H.; Ringsdorf, H. Langmuir 1994, 10, 2869. (c) Widring, C.A.; Smith, E.L; Porter, M.D. J. Am. Chem. Soc. 1991, 113, 2805. (d) Alves, C.A.; Smith, E.L.; Porter, M.D. J. Am. Chem. Soc. 1992, 114, 1222.CrossRefGoogle Scholar
4. (a) Shimaza, K.; Ye, S.; Sato, Y.; Uosaki, K. J. Electroanal. Chem. 1994, 375, 409. (b) Walezak, M.M; Chung, C.; Stole, S.M.; Cindra, A.; Porter, M.D. J. Am. Chem. Soc. 1991, 113, 2370. (c) Wolf, M.O; Fox, M.A. J. Am. Chem. Soc. 1995, 117, 1845. (d) Crooks, R.M; Xu, C.; Sun, L.; Hill, S.L.; Ricco, A.J. Spectros. 1993, 8, 28. (e) Xu, C.; Sun, L.; Kepley, L.J.; Crooks, R.M; Ricco, A.J. Anal. Chem. 1993, 65, 2102.CrossRefGoogle Scholar
5. (a) Whitesides, G. M.; Laibinis Langmuir 1990, 6, 87 (b) Ferguson, G.M.; Chaudhury, M.K.; Biebuyck, H.A.; Whitesides, G. M. Macromolecules 1993, 26, 5870. (c) Lee, T.R., Carey, R.I, Biebuych, H.A; Whitesides, G.M. Langmuir 1994, 10, 741.CrossRefGoogle Scholar
6. (a) Nuzzo, R.G.; Fusco, F.A; Allara, D.L J. Am. Chem. Soc. 1987, 109, 2358. (b) Laibinis, P.E.; Whitesides, G.M; Allara, D.L.; Tao, Y.-T; Parikh, A.N.; Nuzzo, R.G. J. Am. Chem. Soc. 1991, 113, 7152. (c) Creager S.E.; Collard, D.M.; Fox, M.A. Langmuir 1990, 6, 1617.CrossRefGoogle Scholar
7. Guo, L.-H.; Facci, J.S; Mclendon, G.; Mosher, R Langmuir 1994, 10, 4588.CrossRefGoogle Scholar
8. (a) Rowe, G.K.; Creager, S.E. Langmuir 1991, 7, 2307. (b) Rowe, G. K; Creager, S. E. J. Phys. Chem. 1994, 98, 5500. (c) Creager, S. E.; Rowe, G. K. Anal. Chim. Acta 1991, 246, 233. (d) Creager, S. E.; Rowe, G. K. Langmuir 1993, 9, 2330.CrossRefGoogle Scholar
9. Zhang, L.; Godinez, L.A.; Lu, T.; Gokel, G.W.; Kaifer, A.E. Angew. Chem. Int. Ed. Engl. 1995, 34, 235.CrossRefGoogle Scholar
10. Rubin, S.; Chow, J.T; Ferraris, J.P.; Zawodzinski, T.A.Jr. Langmiur, in press.Google Scholar
11. Woods, R. Electroanalytical Chemistry, Vol 9; Bard, A. J. ed.; Marcel Dekker, Inc.; New York and Basel, 1976; p 119.Google Scholar
12. Chailapakul, O.; Crooks, R. C. Langmuir 1993, 9, 884. Sun, S.; Crooks, R. C. Langmuir 1993, 9, 1951. Chidsey, C. E. D.; Loiacono, D. N. Langmuir 1990, 6, 682. Bilewicz, R.; Majda, M. Langmuir 1991, 7, 1951. Ross, C. B.; Sun, S.; Crooks, R. C. Langmuir 1993,9, 632. Zhang, L.; Lu, T.; Gokel, G. W.; Kaifer, A. E. Langmuir 1993, 9, 786.CrossRefGoogle Scholar
13. Heller, A. J. Phys. Chem, 1992, 96, 3579. Degani, Y.; Heller, A. J. Phys. Chem. 1987, 91, 1285. Schumann, W.; Ohara, T. J.; Schmidt, H.-L.; Heller, A. J. Am. Chem. Soc. 1991, 113, 1394. Degani, Y.; Heller, A. J. Am. Chem. Soc. 1988, 110, 2615.CrossRefGoogle Scholar
14. Willner, I.; Riklin, A.; Blonder, R.; Katz, E. manuscript in preparation.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Electrical Communication Between Glucose Oxidase and Different Ferrocenylalkanethiol Chain Lengths
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Electrical Communication Between Glucose Oxidase and Different Ferrocenylalkanethiol Chain Lengths
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Electrical Communication Between Glucose Oxidase and Different Ferrocenylalkanethiol Chain Lengths
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *