Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-22T21:49:16.944Z Has data issue: false hasContentIssue false

Effects of Rapid Thermal Annealing on W/Si1−xGex Contacts

Published online by Cambridge University Press:  03 September 2012

V. Aubry
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 0022, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France
F. Meyer
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 0022, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France
R. Laval
Affiliation:
Institut d'Electronique Fondamentale, CNRS URA 0022, Bât. 220, Université Paris Sud, 91405 Orsay Cedex, France
C. Clerc
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3 CNRS, Bât. 108, Université Paris Sud, 91405 Orsay Cedex, France
P. Warren
Affiliation:
FRANCE TELECOM CNET BP 98, Chemin du Vieux Chêne, 38243 Meylan Cedex, France
D. Dutartre
Affiliation:
FRANCE TELECOM CNET BP 98, Chemin du Vieux Chêne, 38243 Meylan Cedex, France
Get access

Abstract

Thermal reaction of W with Si1−xGex films epitaxially grown by Rapid Thermal Chemical Vapor Deposition was investigated in the temperature range 500°C - 1000°C. The samples were annealed either in a Rapid Thermal Annealing (RTA) system or in a conventional furnace, both in flowing nitrogen. The reaction products were investigated by Rutherford Backscattering Spectroscopy (RBS), Energy Dispersive Spectrometry (EDS) and X-ray diffraction (XRD). Sheet resistance measurements were also performed to follow the progress of the reaction. The reaction of W with Si0.67Ge0.33 is similar to that of W with silicon. W reacts with silicon to form tetragonal WSi2. The Ge-content in the silicide is lower than that of the asdeposited alloy. It is shown that an oxygen contamination occurs during conventional annealing and leads to the formation of non homogeneous Si1−x Gex unreacted alloy below the silicide film. Rapid thermal annealing prevents this parasitic effect and the unreacted film remains homogeneous although a slight decrease in the Ge-content is observed. These results are correlated with Schottky barrier height measurements on p-Si0.83Ge0.17 partially strained films. We observed an increase of the barrier height with increasing the temperature for annealing from 500°C to 1000°C. This trend may be explained either by strain relaxation or (and) Ge-content decrease in the unreacted alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Houghton, D.C., “NATO Advanced Study Institute on Multicomponent and Multilayered Thin Films for advanced Microtechnologies”, Bad Windsheim (Germany), Proc. NATO ASI series, E-Applied Sciences, Vol 234, p.39, Ed.Auciello, O. and Engelman, J..Google Scholar
[2] Boutarek, N., Madar, R., to be published in Appl. Surf. Sci.Google Scholar
[3] Buxbaum, A., Eizenberg, M., Raizman, A. and Schdiffler, F., Appl. Phys. Lett. 60 (1991) 665; Jpn.J.Appl.Phys. 30 (1991) 3590.Google Scholar
[4] Liou, H.K., Wu, X., Gennser, U., Kesan, V.P., Iyer, S.S., Tu, K.N. and Yang, E.S., Appl. Phys. Lett. 60 (1992) 60.Google Scholar
[5] Kanaya, H., Hasegawa, F., Yamaka, E., Moriyan, T. and Nakajima, M., Jpn. J. Appl. Phys. 28, L544 (1989).Google Scholar
[6] Xiao, X., Sturm, J.C., Parihar, S.R., Meyerhofer, D., Palfrey, S. and Shallcross, F.V., IEEE Electron. Dev.Lett. 14 (1993) 199.Google Scholar
[7] Hong, Q.Z. and Mayer, J.W., J.Appl.Phys. 66 (1989) 611.Google Scholar
[8] Aubry, V., Meyer, F., Warren, P. and Dutartre, D., Appl.Phys.Lett 63 (1993) 2520.Google Scholar
[9] Aubry, V., Meyer, F., Laval, R., Clerc, C., Warren, P. and Dutartre, D., Appl.Surf.Sci. to be publishedGoogle Scholar
[10] Dutartre, D., Brémond, G., Souifi, A. and Benyattou, T., Phys. Rev. B 3 (1991) 44; D. Dutartre, P. Warren, I. Berbizier and P. Perret, Thin Solid Films 222 (1992) 22.Google Scholar
[11] Liou, H.K., Mei, P., Gennser, U. and Yang, E.S., Appl. Phys. Lett. 59 (1991) 1200.Google Scholar