Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T10:57:02.726Z Has data issue: false hasContentIssue false

Effects of Rapid Thermal Annealing on the Intersubband Energy Spacing of Self-Assembled InAs/Gaas Quantum Dots

Published online by Cambridge University Press:  10 February 2011

X. C. Wang
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260, Singapore
S. J. Chua
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260, Singapore Institute of Materials Research and Engineering, National University of Singapore, Singapore 119260, Singapore elecsj@nus.edu.sg
S. J. Xu
Affiliation:
Institute of Materials Research and Engineering, National University of Singapore, Singapore 119260, Singapore
Z. H. Zhang
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260, Singapore
Get access

Abstract

In this paper, we showed the significant reduction of the energy spacing between ground state and excited state emissions from InAs/GaAs quantum dots due to interface interdiffusion induced by thermal treatment. In addition, the strong narrowing of the luminescence linewidth of the ground state and excited state emissions from the InAs dot layers for the annealed samples indicates an improvement of the size-distribution of the QDs. Large blue-shift of the energy positions of both emissions was also observed. High resolution X-Ray diffraction experiments give strong evidence of the interface atom interdiffusion in the annealed samples. This work shows ability to tune the wavelength for applications like infrared detectors and lasers based on intrasubband transitions of self-assembled QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203(1993).Google Scholar
2. Leonard, D., Pond, K., and Petroff, P. M., Phys. Rev. B 50, 11687(1994).Google Scholar
3. Adler, F., Geiger, M., Bauknecht, A., Scholz, F., Schweizer, H., Pilkuhn, M. H., Ohnesorge, B., and Forchel, A., J. Appl. Phys. 80, 4019(1996).Google Scholar
4. Schmidt, K. H., Medeiros-Ribeiro, G., Oestreich, M., Petroff, P. M., and Döhler, G. H. Phys. Rev. B 54, 11346(1996).Google Scholar
5. Grundmann, M., Ledentsov, N. N., Stier, O., Bimberg, D., Ustinov, V. M., Kopev, P. S., and Alferov, Zh. I., Appl. Phys. Lett. 68, 979(1996).Google Scholar
6. Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969(1995).Google Scholar
7. Marzin, J.-Y. and Bastard, G., Solid State Commun. 92, 437(1994).Google Scholar
8. Cusack, M. A., Briddon, P. R., and Jaros, M., Phys. Rev. B 54, R2300 (1996); B 56, 4047(1997).Google Scholar
9. Jiang, H. and Singh, J., Phys. Rev. B 56, 4696(1997); IEEE J. Quantum Electron. 34, 1188 (1998).Google Scholar
10. Kim, J., Wang, L.-W., and Zunger, A., Phys. Rev. B 57, R9408 (1998).Google Scholar
11. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P., and Petroff, P. M., Phys. Rev. Lett. 73, 2252(1994).Google Scholar
12. Berryman, K. W., Lyon, S. A., and Segev, M., Appl. Phys. Lett. 70, 1861(1997).Google Scholar
13. Phillips, Kamath, K., Zhou, X., Chervela, N., and Bhattacharya, P., Appl. Phys. Lett. 71, 2079(1997).Google Scholar
14. Sauvage, S., Boucaud, P., Julien, F. H., Gérard, J.-M., and Marzin, J.-Y., J. Appl. Phys. 82, 3396(1997).Google Scholar
15. Sauvage, S., Boucaud, P., Julien, F. H., Gérard, J.-M., and Thierry-Mieg, V. Appl. Phys. Lett. 71, 2785(1997).Google Scholar
16. Chua, S. J., Xu, S. J., Zhang, X. H., Wang, X. C., Mei, T., Fan, W. J., Wang, C. H., Jiang, J., and Xie, X. G., Appl. Phys. Lett. 73, 1997(1998).Google Scholar
17. Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 73, 1937(1998).Google Scholar
18. Maimon, S., Finkman, E., Bahir, G., Schacham, S. E., Garcia, J. M., and Petroff, P. M., Appl. Phys. Lett. 73, 2003(1998).Google Scholar
19. Xu, S. J., Chua, S. J., Mei, T., Wang, X. C., Zhang, X. H., Karunasiri, G., Fan, W. J., Wang, C. H., Jiang, J., Wang, S., and Xie, X. G., Appl. Phys. Lett. 73, 3153(1998).Google Scholar
20. Leon, R., Kim, Y., Jagadish, C., Gal, M., Zou, J., and Cockayne, D. J. H., Appl. Phys. Lett. 69, 1888(1996); R.Leon, D. R. M. Williams, J. Krueger, E. R. Weber, and M. R. Melloch, Phys. Rev. B 56, R4336 (1997).Google Scholar
21. Malik, S., Roberts, C., Murray, R., and Pate, M., Appl. Phys. Lett. 71, 1987(1997).Google Scholar
22. Xu, S. J., Wang, X. C., Chua, S. J., Wang, C. H., Fan, W. J., Jiang, J., and Xie, X. G., Appl. Phys. Lett. 72, 3335(1998).Google Scholar
23. Leon, R., Fafard, S., Piva, P. G., Ruvimov, S., and Liliental-Weber, Z. Phys. Rev. B 58, R4262 (1998).Google Scholar
24. Liao, X. Z., Zou, J., Duan, X. F., Cockayne, J. J. H., Leon, R., and Lobo, C., Phys. Rev. B 58, R4235 (1998).Google Scholar
25. Keating, P. N., Phys. Rev. 145, 637(1966).Google Scholar
26. Martin, R. M., Phys. Rev. B 1, 4005(1969).Google Scholar
27. Krost, A., Bauer, G., and Woitok, J., in Optical Characterization of Epitaxial Semiconductor Layers, Edited by Bauer, G. and Richter, W., Chapter 6, (Springer, Berlin, 1996), p. 346.Google Scholar