Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-n9lxd Total loading time: 0.246 Render date: 2022-10-01T05:30:11.541Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effects of electro-mechanical stressing on the electrical characterization of on-plastic a-Si:H thin film transistors

Published online by Cambridge University Press:  31 January 2011

Jian Z. Chen
Affiliation:
jchen@ntu.edu.tw, National Taiwan University, Institute of Applied Mechanics, No.1 Sec.4 Roosevelt Rd., Taipei, 10617, Taiwan, Province of China
Yeh Chih-Yong
Affiliation:
d97941011@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
I-Chung Chiu
Affiliation:
r95941034@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
I-Chun Cheng
Affiliation:
ichuncheng@cc.ee.ntu.edu.tw, National Taiwan University, Department of Electrical Engineering, Taipei, Taiwan, Province of China
Jung-Jie Huang
Affiliation:
jj-huang@itri.org.tw, Industrial Technology Research Center, Display Technology Center, Chutung, Taiwan, Province of China
Yung-Pei Chen
Affiliation:
jp_chen@itri.org.tw, Industrial Technology Research Institute, Display Technology Center, Chutung, Taiwan, Province of China
Get access

Abstract

We analyzed the effect of electromechanical stressing on the electrical characteristics of hydrogenated amorphous silicon thin-film transistors. It had been shown that the TFTs, fabricated at 150 °C, respond to tension/compression by a rise/fall in electron mobility. In TFTs fabricated using the same process, a slight shift of threshold voltage was observed under prolonged high compressive strain and the gate leakage current slightly increases after ˜2% compressive strain. In general, the change of TFT performance due to pure mechanical straining is small in comparison to electrical gate-bias stressing. From the comparison among Maxwell stress (induced by electrical gate-bias stressing), mechanical stress (applied by bending), and drifting electrical force for passivated hydrogen atom, the most significant cause for the change of electrical characterization of a-Si:H TFTs should be the trapping charges inside the dielectric, under combined electrical and mechanical stressing. The mechanical stress does not act on Si-H bonds to drift hydrogen atoms, while it is mainly balanced by the rigid Si-Si networks in a-Si:H or a-SiNx. Therefore, mechanical stress has very little effect on the instability of low temperature processed a-Si:H TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yang, C.S. Smith, L. L. Arthur, C. B. and Parsons, G. N. J. Vac. Sci. Technol. B 18, 683(2000).CrossRefGoogle Scholar
2 Gleskova, H. Wagner, S. Soboyejo, W. and Suo, Z. J. Appl. Phys. 92, 6224(2002).CrossRefGoogle Scholar
3 Gleskova, H. Wagner, S. and Suo, Z. Appl. Phys. Lett. 75, 3011(1999).CrossRefGoogle Scholar
4 Gleskova, H. and Wagner, S. Appl. Phys. Lett. 79, 3347(2001).CrossRefGoogle Scholar
5 Chen, J. Z. Cheng, I.C. Wagner, S. Jackson, W. Perlov, C. Taussig, C. Mater. Res. Soc. Symp. Proc. 989, 0989–A09 (2007); J. Z. Chen C. R.|Tsay I.C. Cheng H. Gleskova S. Wagner W. B. Jackson C. Perlov and C. Taussig presentation in 7th Annual USDC Flexible Electronics and Displays Conference and Exhibition '07, Phoenix, AZ, USA.CrossRefGoogle Scholar
6 Won, S. H. Chung, J. K. Lee, C. B. Nam, H. C. Hur, J. H. and Jang, J. J. Electrochem. Soc. 151, G167 (2004).CrossRefGoogle Scholar
7 Berkel, C. van and Powell, M. J. Appl. Phys. Lett. 51, 1094(1987).CrossRefGoogle Scholar
8 Powell, M. J. Berkel, C. van, and Hughes, J. R. Appl. Phys. Lett. 54, 1323(1989).CrossRefGoogle Scholar
9 Jackson, W. B. and Moyer, M. D. Phys. Rev. B 36, 6217(1987).CrossRefGoogle Scholar
10 Jackson, W. B. Marshall, J. M. and Moyer, M. D. Phys. Rev. B 39, 1164(1989).CrossRefGoogle Scholar
11 Kaneko, Y. Sasano, A. and Tsukada, T. J. Appl. Phys. 69, 7301(1991).CrossRefGoogle Scholar
12 Deane, S. C. Wehrspohn, R. B. and Powell, M. J. Phys. Rev. B 58, 12625(1998).CrossRefGoogle Scholar
13 Wehrspohn, R. B. Deane, S. C. French, I. D. Gale, I. and Powell, M. J. J. Appl. Phys. 87, 144(2000).CrossRefGoogle Scholar
14 Chen, J. Z. and Cheng, I.C. J. Appl. Phys. 104, 044508(2008).CrossRefGoogle Scholar
15 Powell, M. J. Appl. Phys. Lett. 43, 597(1983).CrossRefGoogle Scholar
16 Libsch, F. R. and Kanicki, , Appl. Phys. Lett. 62, 1286(1993).CrossRefGoogle Scholar
17 Powell, M. J. Berkel, C. van, and Hughes, J. R. Appl. Phys. Lett. 54, 1323(1989).CrossRefGoogle Scholar
18 Jackson, W. B. Marshall, J. M. and Moyer, M. D. Phys. Rev. B 39, 1164(1989).CrossRefGoogle Scholar
19 Sze, S. M. Physics of Semiconductor Devices, 2nd ed. (1983).Google Scholar
20 McMeeking, R. M. J. Appl. Phys. 62, 3116(1987).CrossRefGoogle Scholar
21 Kärcher, R., Ley, L. and Johnson, R. L. Phys. Rev. B 30, 1896(1984).CrossRefGoogle Scholar
22 Delden, M. H. W. M. van, and Wel, P. J. van der, IEEE 41st Annual International Reliability Physics Symposium, pp.293 (2003).Google Scholar
23 Kattamis, A. Z. Cherenack, K. H. Hekmatshoar, B. Cheng, I.C. Gleskova, H. Sturm, J. C. and Wagner, S. IEEE Electron Dev. Lett. 28, 606(2007).CrossRefGoogle Scholar
24 Huang, J.J. Liu, C.J. Lin, H.C. Tsai, C.J. Chen, Y.P. Hu, G.R. and Lee, C.C. J. Phys. D: Appl. Phys. 41, 245502(2008).CrossRefGoogle Scholar
25 Street, R. A. Hydrogenated amorphous silicon (1991).CrossRefGoogle Scholar
26 Wehrspohn, R. B. Deane, S. C. French, I. D. Gale, I. Hewett, J. and Powell, M. J. and Robertson, J. J. Appl. Phys. 87, 144(2000).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of electro-mechanical stressing on the electrical characterization of on-plastic a-Si:H thin film transistors
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of electro-mechanical stressing on the electrical characterization of on-plastic a-Si:H thin film transistors
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of electro-mechanical stressing on the electrical characterization of on-plastic a-Si:H thin film transistors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *