Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T12:28:43.163Z Has data issue: false hasContentIssue false

Effects and Applications of Multiple-Gas Rta Treatment on Ti-Based Metallization for Future Dram Devices

Published online by Cambridge University Press:  15 February 2011

John M. Drynan
Affiliation:
ULSI Device Development Laboratories, NEC Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229, JAPAN
Kuniaki Koyama
Affiliation:
ULSI Device Development Laboratories, NEC Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229, JAPAN
Get access

Abstract

The effects of N2, O2, and Ar gas RTA treatments on Ti, TiN, and Ti-polycide film characteristics have been investigated in anticipation of the trend in DRAM development toward lower resistance materials to replace the standard WSi2, WSi2 on doped polycrystalline silicon (W-polycide), and doped polysilicon conductors used in interconnections, transistor gates, and contact-hole plugs, respectively. The reactivities of Ti and TiN in N2 and O2 gases are markedly different. Film characteristics such as sheet resistance, crystallinity, and elemental composition remain unchanged for TiN RTA-treated in N2 but vary significantly for Ti. In the case of Ti, XRD and XPS data indicate the formation of intermediate Ti-rich TiN or Ti2N compounds prior to the final TiN phase. Similarly, RTO-treated TiN shows a slower oxide growth rate compared with that of Ti. In the case of TiN, a surface layer of rutile phase TiO2 is directly formed, whereas for Ti the data suggest the formation of Ti-rich oxides such as Ti2O or TiO prior to the final TiO2 rutile phase. RTA treatment in different ambient gases can be used to create multilayer Ti-polycide and TiN/Ti metallization with self-aligned TiO2 passivation and etch-stop layers. TiN can also be applied with other materials and processes to form new DRAM memory cell capacitor structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. A general perspective of DRAM device technology (especially word and bit line conductor materials) according to DRAM generation can be found in Nikkei Microdevices, Vol.No.: 31(lMbit); 39(4Mbit); 66(16Mbit); 101(64Mbit); 93(256Mbit); 117(1Gbit). Examples of conductor materials used in earlier 256K/IMbit DRAMs can be found in the ISSCC Digest of Technical Papers, 26 (1983), 27 (1984), and 28 (1985). The 1985 ISSCC Digest (Session XVII Overview) specifically mentions this transition in word and bit line material from polysilicon to polycide/silicide between the 256K and IMbit DRAM generations.Google Scholar
2. Drynan, J.M. and Koyama, K., VMIC Proceedings, 380 (1994).Google Scholar
3. Chu, C.L., Chin, G., Saraswat, K.C., Wong, S.S., and Dutton, R., IEEE Elec. Dev. Lett. 12 (12), 696 (1991).Google Scholar
4. Pfiester, J.R., Mele, T.C., Limb, Y., Jones, R.E., Woo, M., Boeck, B., and Gunderson, C.D., IEDM Tech. Dig., 241 (1990).Google Scholar
5. Drynan, J.M., Hada, H., and Kunio, T., Mat. Res. Soc. Symp. Proc. 260, 323 (1992).Google Scholar
6. Drynan, J.M., Hada, H., and Kunio, T., IEICE Trans. Electron., E76–C (4), 613 (1993).Google Scholar
7. Paik, C.R., Joo, S.H., Moon, J., Shim, T.E., and Lee, J.G., Tech. Rep. IEICE, SDM 94–62, 29 (1994).Google Scholar
8. Wittmer, M., Noser, J., and Melchior, H., J. Appl. Phys. 52 (11), 6659 (1981).Google Scholar
9. Drynan, J.M. and Koyama, K., VMIC Proceedings, 449 (1994).Google Scholar
10. Parker, R.H., An Introduction to Chemical Metallurgy, 2nd ed. (Pergamon Press, Oxford, 1978), pp.6177.Google Scholar
11. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, 1979), pp.268323.Google Scholar
12. Murarka, S.P., Silicides for VLSI Applications, (Academic Press, Orlando, 1983), pp.7577.Google Scholar
13. Parker, R.H., op. cit., pp.319–328.Google Scholar
14. Wicaksana, D., Kobayashi, A., and Kinbara, A., J. Vac. Sci. Technol. A 10 (4), 1479 (1992).Google Scholar
15. Kim, T.W., Jung, M., Kim, H.J., Park, T.H., Yoon, Y.S., Kang, W.N., Yom, S.S., and Na, H.K., Appl. Phys. Lett. 64 (11), 1407 (1994).Google Scholar
16. Lee, D.H., Cho, Y.S., Yi, W.I., Kim, T.S., Lee, J.K., and Jung, H.Y., Appl. Phys. Lett. 66 (7), 815 (1995).Google Scholar
17. Harashima, K., Akimoto, T., and Tkawa, E., Proceedings of Dry Process Symp., 247 (1994).Google Scholar
18. Takada, M., Extended Abstracts of SSDM, 874 (1993).Google Scholar
19. Matsuhashi, H. and Nishikawa, S., Extended Abstracts of SSDM, 853 (1993).Google Scholar
20. Kamiyama, S., Suzuki, H., Watanabe, H., Sakai, A., Oshida, M., Tatsumi, T., Tanigawa, T., Kasai, N., and Ishitani, A., IEDM Tech. Dig., 49 (1993).Google Scholar
21. Kaga, T., Sudoh, Y., Goto, H., Shoji, K., Kisu, T., Yamashita, H., Nagai, R., lijima, S., Ohkura, M., Murai, F., Tanaka, T., Goto, Y., Yokoyama, N., Horiguchi, M., Isoda, M., Nishida, T., and Takeda, E., IEDM Tech. Dig., 927 (1994).Google Scholar
22. Kwon, K.W., Kang, C.S., Choi, G.H., Sun, Y.B., Ahn, S.T., Lee, M.Y., and Lee, J.G., Symp. VLSI Tech. Dig., 45 (1993).Google Scholar
23. Sun, S.C. and Chen, T.F., IEDM Tech. Dig., 333 (1994).Google Scholar
24. Kwon, K.W., Park, I.S., Han, D.H., Kim, E.S., Ahn, S.T., and Lee, M.Y., IEDM Tech. Dig., 835 (1994).Google Scholar
25. Grigorov, K.G., Benhocine, A.H., Bouchier, D., and Meyer, F., Mat. Res. Soc. Symp. Proc. 337, 441 (1994).Google Scholar
26. Lesaicherre, P-Y., Yamamichi, S., Yamaguchi, H., Takemura, K., Watanabe, H., Tokashiki, K., Satoh, K., Sakuma, T., Yoshida, M., Ohnishi, S., Nakajima, K., Shibahara, K., Miyasaka, Y., and Ono, H., IEDM Tech. Dig., 831 (1994).Google Scholar
27. Onishi, S., Hamada, K., Ishihara, K., Ito, Y., Yokoyama, S., Kudo, J., and Sakiyama, K., IEDM Tech. Dig., 843 (1994).Google Scholar